-
Previous Article
Time optimal control for a nonholonomic system with state constraint
- MCRF Home
- This Issue
-
Next Article
Stability of the determination of a time-dependent coefficient in parabolic equations
Controllability problems for the 1-d wave equations on a half-axis with Neumann boundary control
1. | Mathematical Division, Institute for Low Temperature Physics and Engineering, 47 Lenin Ave., Kharkiv 61103, Ukraine |
References:
[1] |
M. I. Belishev and A. F. Vakulenko, On a control problem for the wave equation in $\mathbb{R}^3$, (in Russian) Zapiski Nauchnykh Seminarov POMI, 332 (2006), 19-37; English translation in J. Math. Sci., 142 (2007), 2528-2539.
doi: 10.1007/s10958-007-0140-3. |
[2] |
I. Erdélyi, A generalized inverse for arbitrary operators between Hilbert spaces, Proc. Camb. Phil. Soc., 71 (1972), 43-50. |
[3] |
L. V. Fardigola, On controllability problems for the wave equation on a half-plane, J. Math. Phys. Anal. Geom., 1 (2005), 93-115. |
[4] |
L. V. Fardigola, Controllability problems for the string equation on a half-axis with a boundary control bounded by a hard constant, SIAM J. Control Optim., 47 (2008), 2179-2199.
doi: 10.1137/070684057. |
[5] |
L. V.Fardigola, Neumann boundary control problem for the string equation on a half-axis, (in Ukrainian) Dopovidi Natsionalnoi Akademii Nauk Ukrainy, (2009), 36-41. |
[6] |
L. V.Fardigola, Controllability problems for the 1-d wave equation on a half-axis with the Dirichlet boundary control, ESAIM: Control, Optim. Calc. Var., 18 (2012), 748-773.
doi: 10.1051/cocv/2011169. |
[7] |
L. V. Fardigola and K. S. Khalina, Controllability problems for the string equation, (in Ukrainian) Ukr. Mat. Zh., 59 (2007), 939-952; English translation in Ukr. Math. J., 59 (2007), 1040-1058.
doi: 10.1007/s11253-007-0068-2. |
[8] |
I. M. Gelfand and G. E. Shilov, "Generalized Functions," Vol. 2, (in Russian) Fismatgiz, Moscow, 1958. |
[9] |
S. G. Gindikin and L. R. Volevich, "Distributions and Convolution Equations," Gordon and Breach Sci. Publ., Philadelphia, PA, 1992. |
[10] |
M. Gugat, A. Keimer and G. Leugering, Optimal distributed control of the wave equation subject to state constraints, ZAMM Angew. Math. Mech., 89 (2009), 420-444.
doi: 10.1002/zamm.200800196. |
[11] |
M. Gugat and G. Leugering, $L^\infty$-norm minimal control of the wave equation: On the weakness of the bang-bang principle, ESAIM: Control Optim. Calc. Var., 14 (2008), 254-283.
doi: 10.1051/cocv:2007044. |
[12] |
M. Gugat, G. Leugering and G. M. Sklyar, $L^p$-optimal boundary control for the wave equation, SIAM J. Control Optim., 44 (2005), 49-74.
doi: 10.1137/S0363012903419212. |
[13] |
V. A. Il'in and E. I. Moiseev, A boundary control at two ends by a process described by the telegraph equation, (in Russian) Dokl. Akad. Nauk, Ross. Akad. Nauk, 394 (2004), 154-158; English translation in Doklady Mathematics, 69 (2004), 33-37. |
[14] |
E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc., 26 (1920), 394-395. |
[15] |
R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc., 51 (1955), 406-413. |
[16] |
L. Schwartz, "Théorie des Distributions," Vol. 1, 2, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. |
[17] |
G. M. Sklyar and L. V. Fardigola, The Markov power moment problem in problems of controllability and frequency extinguishing for the wave equation on a half-axis, J. Math. Anal. Appl., 276 (2002), 109-134.
doi: 10.1016/S0022-247X(02)00380-3. |
[18] |
J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinder equations with singular potentials, SIAM J. Math. Anal., 41 (2009), 1508-1532.
doi: 10.1137/080731396. |
[19] |
X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, in "Proceedings of the International Congress of Mathematicians," Vol. IV, Hindustan Book Agency, New Delhi, (2010), 3008-3034. |
[20] |
E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, in "Handbook of Differential Equations: Evolutionary Equations," Vol. 3, Elsevier/North-Holland, Amsterdam, (2006), 527-621.
doi: 10.1016/S1874-5717(07)80010-7. |
show all references
References:
[1] |
M. I. Belishev and A. F. Vakulenko, On a control problem for the wave equation in $\mathbb{R}^3$, (in Russian) Zapiski Nauchnykh Seminarov POMI, 332 (2006), 19-37; English translation in J. Math. Sci., 142 (2007), 2528-2539.
doi: 10.1007/s10958-007-0140-3. |
[2] |
I. Erdélyi, A generalized inverse for arbitrary operators between Hilbert spaces, Proc. Camb. Phil. Soc., 71 (1972), 43-50. |
[3] |
L. V. Fardigola, On controllability problems for the wave equation on a half-plane, J. Math. Phys. Anal. Geom., 1 (2005), 93-115. |
[4] |
L. V. Fardigola, Controllability problems for the string equation on a half-axis with a boundary control bounded by a hard constant, SIAM J. Control Optim., 47 (2008), 2179-2199.
doi: 10.1137/070684057. |
[5] |
L. V.Fardigola, Neumann boundary control problem for the string equation on a half-axis, (in Ukrainian) Dopovidi Natsionalnoi Akademii Nauk Ukrainy, (2009), 36-41. |
[6] |
L. V.Fardigola, Controllability problems for the 1-d wave equation on a half-axis with the Dirichlet boundary control, ESAIM: Control, Optim. Calc. Var., 18 (2012), 748-773.
doi: 10.1051/cocv/2011169. |
[7] |
L. V. Fardigola and K. S. Khalina, Controllability problems for the string equation, (in Ukrainian) Ukr. Mat. Zh., 59 (2007), 939-952; English translation in Ukr. Math. J., 59 (2007), 1040-1058.
doi: 10.1007/s11253-007-0068-2. |
[8] |
I. M. Gelfand and G. E. Shilov, "Generalized Functions," Vol. 2, (in Russian) Fismatgiz, Moscow, 1958. |
[9] |
S. G. Gindikin and L. R. Volevich, "Distributions and Convolution Equations," Gordon and Breach Sci. Publ., Philadelphia, PA, 1992. |
[10] |
M. Gugat, A. Keimer and G. Leugering, Optimal distributed control of the wave equation subject to state constraints, ZAMM Angew. Math. Mech., 89 (2009), 420-444.
doi: 10.1002/zamm.200800196. |
[11] |
M. Gugat and G. Leugering, $L^\infty$-norm minimal control of the wave equation: On the weakness of the bang-bang principle, ESAIM: Control Optim. Calc. Var., 14 (2008), 254-283.
doi: 10.1051/cocv:2007044. |
[12] |
M. Gugat, G. Leugering and G. M. Sklyar, $L^p$-optimal boundary control for the wave equation, SIAM J. Control Optim., 44 (2005), 49-74.
doi: 10.1137/S0363012903419212. |
[13] |
V. A. Il'in and E. I. Moiseev, A boundary control at two ends by a process described by the telegraph equation, (in Russian) Dokl. Akad. Nauk, Ross. Akad. Nauk, 394 (2004), 154-158; English translation in Doklady Mathematics, 69 (2004), 33-37. |
[14] |
E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc., 26 (1920), 394-395. |
[15] |
R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc., 51 (1955), 406-413. |
[16] |
L. Schwartz, "Théorie des Distributions," Vol. 1, 2, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. |
[17] |
G. M. Sklyar and L. V. Fardigola, The Markov power moment problem in problems of controllability and frequency extinguishing for the wave equation on a half-axis, J. Math. Anal. Appl., 276 (2002), 109-134.
doi: 10.1016/S0022-247X(02)00380-3. |
[18] |
J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinder equations with singular potentials, SIAM J. Math. Anal., 41 (2009), 1508-1532.
doi: 10.1137/080731396. |
[19] |
X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, in "Proceedings of the International Congress of Mathematicians," Vol. IV, Hindustan Book Agency, New Delhi, (2010), 3008-3034. |
[20] |
E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, in "Handbook of Differential Equations: Evolutionary Equations," Vol. 3, Elsevier/North-Holland, Amsterdam, (2006), 527-621.
doi: 10.1016/S1874-5717(07)80010-7. |
[1] |
Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control and Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31 |
[2] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[3] |
Abdessalam Kara, Said Guedjiba. Some representations of moore-penrose inverse for the sum of two operators and the extension of the fill-fishkind formula. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 469-480. doi: 10.3934/naco.2021015 |
[4] |
Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 |
[5] |
Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic and Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587 |
[6] |
John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems and Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181 |
[7] |
M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215 |
[8] |
Belkacem Said-Houari. Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation with arbitrarily large higher-order Sobolev norms. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022066 |
[9] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[10] |
Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055 |
[11] |
Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems and Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042 |
[12] |
Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 |
[13] |
Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic and Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445 |
[14] |
Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems and Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019 |
[15] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[16] |
Gael Diebou Yomgne. On a nonlinear Laplace equation related to the boundary Yamabe problem in the upper-half space. Communications on Pure and Applied Analysis, 2022, 21 (2) : 517-539. doi: 10.3934/cpaa.2021186 |
[17] |
Linglong Du. Characteristic half space problem for the Broadwell model. Networks and Heterogeneous Media, 2014, 9 (1) : 97-110. doi: 10.3934/nhm.2014.9.97 |
[18] |
Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems and Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115 |
[19] |
Jae Gil Choi, David Skoug. Algebraic structure of the $ L_2 $ analytic Fourier–Feynman transform associated with Gaussian paths on Wiener space. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3829-3842. doi: 10.3934/cpaa.2020169 |
[20] |
Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic and Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]