March  2013, 3(1): 21-49. doi: 10.3934/mcrf.2013.3.21

Stability estimates for a Robin coefficient in the two-dimensional Stokes system

1. 

Université Pierre et Marie Curie-Paris 6, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France

2. 

INRIA, Projet REO, Rocquencourt, BP 105, 78153 Le Chesnay cedex, France, France

Received  February 2012 Revised  October 2012 Published  February 2013

In this paper, we consider the Stokes equations and we are concerned with the inverse problem of identifying a Robin coefficient on some non accessible part of the boundary from available data on the other part of the boundary. We first study the identifiability of the Robin coefficient and then we establish a stability estimate of logarithm type thanks to a Carleman inequality due to A. L. Bukhgeim [11] and under the assumption that the velocity of a given reference solution stays far from $0$ on a part of the boundary where Robin conditions are prescribed.
Citation: Muriel Boulakia, Anne-Claire Egloffe, Céline Grandmont. Stability estimates for a Robin coefficient in the two-dimensional Stokes system. Mathematical Control and Related Fields, 2013, 3 (1) : 21-49. doi: 10.3934/mcrf.2013.3.21
References:
[1]

A.-C. Egloffe, "Étude de Quelques Problèmes Inverses pour le Système de Stokes. Application aux Poumons," Ph.D thesis, Paris 6 University, 2012.

[2]

F. Boyer and P. Fabrie, "Éléments D'analyse pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles," Mathématiques & Applications (Berlin) [Mathematics & Applications], 52, Springer-Verlag, Berlin, 2006.

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," $2^{nd}$ edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[4]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Springer-Verlag, Berlin, 1976.

[5]

A. Lunardi, "Interpolation Theory," $2^{nd}$ edition, Appunti, Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes, Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2009.

[6]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications," Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

[7]

P.-A Raviart and J.-M. Thomas, "Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles," Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

[8]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[9]

R. Dautray and J.-L. Lions, "Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques," Vol. 5, Spectre des Opérateurs, With the collaboration of Michel Artola, Michel Cessenat, Jean Michel Combes and Bruno Scheurer, Reprinted from the 1984 edition, INSTN: Collection Enseignement, Masson, Paris, 1988.

[10]

M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude, preprint, arXiv:1201.2552, 2012.

[11]

A. L. Bukhgeĭm, Extension of solutions of elliptic equations from discrete sets, Journal of Inverse and Ill-Posed Problems, 1 (1993), 17-32. doi: 10.1515/jiip.1993.1.1.17.

[12]

G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement, Inverse Problems, 19 (2003), 973-984. doi: 10.1088/0266-5611/19/4/312.

[13]

A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations, Multiscale Modeling & Simulation, 1 (2003), 173-195. doi: 10.1137/S1540345902408482.

[14]

I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Computer Methods in Applied Mechanics and Engineering, 195 (2006), 3776-3796. doi: 10.1016/j.cma.2005.04.014.

[15]

L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract, Mathematical Models & Methods in Applied Sciences, 20 (2010), 59-93. doi: 10.1142/S0218202510004155.

[16]

M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging, Journal of Mathematical Analysis and Applications, 343 (2008), 328-336. doi: 10.1016/j.jmaa.2008.01.066.

[17]

S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems, Inverse Problems, 20 (2004), 47-59. doi: 10.1088/0266-5611/20/1/003.

[18]

J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation, Mathematical Models & Methods in Applied Sciences, 18 (2008), 107-123. doi: 10.1142/S0218202508002620.

[19]

S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements, Inverse Problems, 15 (1999), 1425-1438. doi: 10.1088/0266-5611/15/6/303.

[20]

E. Sincich, Lipschitz stability for the inverse Robin problem, Inverse Problems, 23 (2007), 1311-1326. doi: 10.1088/0266-5611/23/3/027.

[21]

K.-D. Phung, Remarques sur l'observabilité pour l'équation de Laplace, ESAIM: Control, Optimization and Calculus of Variations, 9 (2003), 621-635. doi: 10.1051/cocv:2003030.

[22]

L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: The case of Lipschitz domains, Applicable Analysis, 89 (2010), 1745-1768. doi: 10.1080/00036810903393809.

[23]

L. Bourgeois, About stability and regularization of ill-posed elliptic Cauchy problems: The case of $C^{1,1}$ domains, Mathematical Modelling and Numerical Analysis, 44 (2010), 715-735. doi: 10.1051/m2an/2010016.

[24]

G. Alessandrini and E. Sincich, Detecting nonlinear corrosion by electrostatic measurements, Applicable Analysis, 85 (2006), 107-128. doi: 10.1080/00036810500277702.

[25]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Communications in Partial Differential Equations, 21 (1996), 573-596. doi: 10.1080/03605309608821198.

show all references

References:
[1]

A.-C. Egloffe, "Étude de Quelques Problèmes Inverses pour le Système de Stokes. Application aux Poumons," Ph.D thesis, Paris 6 University, 2012.

[2]

F. Boyer and P. Fabrie, "Éléments D'analyse pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles," Mathématiques & Applications (Berlin) [Mathematics & Applications], 52, Springer-Verlag, Berlin, 2006.

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," $2^{nd}$ edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[4]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Springer-Verlag, Berlin, 1976.

[5]

A. Lunardi, "Interpolation Theory," $2^{nd}$ edition, Appunti, Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes, Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2009.

[6]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications," Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

[7]

P.-A Raviart and J.-M. Thomas, "Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles," Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

[8]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[9]

R. Dautray and J.-L. Lions, "Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques," Vol. 5, Spectre des Opérateurs, With the collaboration of Michel Artola, Michel Cessenat, Jean Michel Combes and Bruno Scheurer, Reprinted from the 1984 edition, INSTN: Collection Enseignement, Masson, Paris, 1988.

[10]

M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude, preprint, arXiv:1201.2552, 2012.

[11]

A. L. Bukhgeĭm, Extension of solutions of elliptic equations from discrete sets, Journal of Inverse and Ill-Posed Problems, 1 (1993), 17-32. doi: 10.1515/jiip.1993.1.1.17.

[12]

G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement, Inverse Problems, 19 (2003), 973-984. doi: 10.1088/0266-5611/19/4/312.

[13]

A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations, Multiscale Modeling & Simulation, 1 (2003), 173-195. doi: 10.1137/S1540345902408482.

[14]

I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Computer Methods in Applied Mechanics and Engineering, 195 (2006), 3776-3796. doi: 10.1016/j.cma.2005.04.014.

[15]

L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract, Mathematical Models & Methods in Applied Sciences, 20 (2010), 59-93. doi: 10.1142/S0218202510004155.

[16]

M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging, Journal of Mathematical Analysis and Applications, 343 (2008), 328-336. doi: 10.1016/j.jmaa.2008.01.066.

[17]

S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems, Inverse Problems, 20 (2004), 47-59. doi: 10.1088/0266-5611/20/1/003.

[18]

J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation, Mathematical Models & Methods in Applied Sciences, 18 (2008), 107-123. doi: 10.1142/S0218202508002620.

[19]

S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements, Inverse Problems, 15 (1999), 1425-1438. doi: 10.1088/0266-5611/15/6/303.

[20]

E. Sincich, Lipschitz stability for the inverse Robin problem, Inverse Problems, 23 (2007), 1311-1326. doi: 10.1088/0266-5611/23/3/027.

[21]

K.-D. Phung, Remarques sur l'observabilité pour l'équation de Laplace, ESAIM: Control, Optimization and Calculus of Variations, 9 (2003), 621-635. doi: 10.1051/cocv:2003030.

[22]

L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: The case of Lipschitz domains, Applicable Analysis, 89 (2010), 1745-1768. doi: 10.1080/00036810903393809.

[23]

L. Bourgeois, About stability and regularization of ill-posed elliptic Cauchy problems: The case of $C^{1,1}$ domains, Mathematical Modelling and Numerical Analysis, 44 (2010), 715-735. doi: 10.1051/m2an/2010016.

[24]

G. Alessandrini and E. Sincich, Detecting nonlinear corrosion by electrostatic measurements, Applicable Analysis, 85 (2006), 107-128. doi: 10.1080/00036810500277702.

[25]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Communications in Partial Differential Equations, 21 (1996), 573-596. doi: 10.1080/03605309608821198.

[1]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[2]

Xiaofei Cao, Guowei Dai. Stability analysis of a model on varying domain with the Robin boundary condition. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 935-942. doi: 10.3934/dcdss.2017048

[3]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[4]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[5]

Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221

[6]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[7]

Kei Fong Lam, Hao Wu. Convergence to equilibrium for a bulk–surface Allen–Cahn system coupled through a nonlinear Robin boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1847-1878. doi: 10.3934/dcds.2020096

[8]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[10]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

[11]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[12]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko, Xiao-Chuan Xu. An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Problems and Imaging, 2020, 14 (1) : 153-169. doi: 10.3934/ipi.2019068

[13]

Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2022, 11 (5) : 1681-1699. doi: 10.3934/eect.2021060

[14]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[15]

Le Thi Phuong Ngoc, Khong Thi Thao Uyen, Nguyen Huu Nhan, Nguyen Thanh Long. On a system of nonlinear pseudoparabolic equations with Robin-Dirichlet boundary conditions. Communications on Pure and Applied Analysis, 2022, 21 (2) : 585-623. doi: 10.3934/cpaa.2021190

[16]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[17]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[18]

Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure and Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93

[19]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[20]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (9)

[Back to Top]