\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion

Abstract Related Papers Cited by
  • The Euler-Poinsot rigid body motion is a standard mechanical system and is the model for left-invariant Riemannian metrics on $SO(3)$. In this article, using the Serret-Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover the metric can be restricted to a 2D surface and the conjugate points of this metric are evaluated using recent work [4] on surfaces of revolution.
    Mathematics Subject Classification: 49K15, 53C20, 70Q05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, "Mathematical Methods of Classical Mechanics," Translated from the Russian by K. Vogtmann and A. Weinstein, $2^{nd}$ edition, Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989, xvi+508.

    [2]

    L. Bates and F. Fassò, The conjugate locus for the euler top. I. The axisymmetric case, Int. Math. Forum, 2 (2007), 2109-2139.

    [3]

    B. Bonnard, Contrôlabilité de systemes mécaniques sur les groupes de lie (French), [controllability of mechanical systems on lie groups], SIAM J. Control Optim., 22 (1984), 711-722.doi: 10.1137/0322045.

    [4]

    B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081-1098.doi: 10.1016/j.anihpc.2008.03.010.

    [5]

    B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum control: Meridian case, J. Math. Sci., (2013) to appear.

    [6]

    M. do Carmo, "Riemannian Geometry,'' Translated from the second Portuguese edition by Francis Flaherty, Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992, xiv+300.

    [7]

    P. Gurfil, A. Elipe, W. Tangren and M. Efroimsky, The Serret-Andoyer formalism in rigid-body dynamics. I. Symmetries and perturbations, Regul. Chaotic Dyn., 12 (2007), 389-425.doi: 10.1134/S156035470704003X.

    [8]

    J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids, Manuscripta Math., 114 (2004), 247-264.doi: 10.1007/s00229-004-0455-z.

    [9]

    V. Jurdjevic, "Geometric Control Theory,'' Cambridge studies in advanced mathematics, Cambridge University Press, Cambridge, 1997.

    [10]

    M. Lara and S. FerrerClosed form integration of the Hitzl-Breakwell problem in action-angle variables, IAA-AAS-DyCoSS1-01-02 (AAS 12-302), 27-39.

    [11]

    D. Lawden, "Elliptic Functions and Applications,'' Applied mathematical sciences, Springer-Verlag, New York, 1989, xiv+334.

    [12]

    H. Poincaré, Sur les lignes géodésiques des surfaces convexes, (French) [On the geodesic lines of convex surfaces] Trans. Amer. Math. Soc., 6 (1905), 237-274.doi: 10.2307/1986219.

    [13]

    K. Shiohama, T. Shioya and M. Tanaka, "The Geometry of Total Curvature on Complete Open Surfaces,'' Cambridge tracts in mathematics, 159. Cambridge University Press, Cambridge, 2003, x+284.doi: 10.1017/CBO9780511543159.

    [14]

    R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and toponogov's comparison theorem, Tohoku Math. J. (2), 59 (2007), 379-399.doi: 10.2748/tmj/1192117984.

    [15]

    A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions, and variational problems, vol. 16 of Dynamical Systems VII, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin-Heidelberg-New York, 1994, 1-81.

    [16]

    H. Yuan, R. Zeier, N. Khaneja and S. Lloyd, Constructing two-qubit gates with minimal couplings, Phys. Rev. A (3), 79 (2009), 4pp.doi: 10.1103/PhysRevA.79.042309.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return