Citation: |
[1] |
V. I. Arnold, "Mathematical Methods of Classical Mechanics," Translated from the Russian by K. Vogtmann and A. Weinstein, $2^{nd}$ edition, Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989, xvi+508. |
[2] |
L. Bates and F. Fassò, The conjugate locus for the euler top. I. The axisymmetric case, Int. Math. Forum, 2 (2007), 2109-2139. |
[3] |
B. Bonnard, Contrôlabilité de systemes mécaniques sur les groupes de lie (French), [controllability of mechanical systems on lie groups], SIAM J. Control Optim., 22 (1984), 711-722.doi: 10.1137/0322045. |
[4] |
B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081-1098.doi: 10.1016/j.anihpc.2008.03.010. |
[5] |
B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum control: Meridian case, J. Math. Sci., (2013) to appear. |
[6] |
M. do Carmo, "Riemannian Geometry,'' Translated from the second Portuguese edition by Francis Flaherty, Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992, xiv+300. |
[7] |
P. Gurfil, A. Elipe, W. Tangren and M. Efroimsky, The Serret-Andoyer formalism in rigid-body dynamics. I. Symmetries and perturbations, Regul. Chaotic Dyn., 12 (2007), 389-425.doi: 10.1134/S156035470704003X. |
[8] |
J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids, Manuscripta Math., 114 (2004), 247-264.doi: 10.1007/s00229-004-0455-z. |
[9] |
V. Jurdjevic, "Geometric Control Theory,'' Cambridge studies in advanced mathematics, Cambridge University Press, Cambridge, 1997. |
[10] |
M. Lara and S. Ferrer, Closed form integration of the Hitzl-Breakwell problem in action-angle variables, IAA-AAS-DyCoSS1-01-02 (AAS 12-302), 27-39. |
[11] |
D. Lawden, "Elliptic Functions and Applications,'' Applied mathematical sciences, Springer-Verlag, New York, 1989, xiv+334. |
[12] |
H. Poincaré, Sur les lignes géodésiques des surfaces convexes, (French) [On the geodesic lines of convex surfaces] Trans. Amer. Math. Soc., 6 (1905), 237-274.doi: 10.2307/1986219. |
[13] |
K. Shiohama, T. Shioya and M. Tanaka, "The Geometry of Total Curvature on Complete Open Surfaces,'' Cambridge tracts in mathematics, 159. Cambridge University Press, Cambridge, 2003, x+284.doi: 10.1017/CBO9780511543159. |
[14] |
R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and toponogov's comparison theorem, Tohoku Math. J. (2), 59 (2007), 379-399.doi: 10.2748/tmj/1192117984. |
[15] |
A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions, and variational problems, vol. 16 of Dynamical Systems VII, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin-Heidelberg-New York, 1994, 1-81. |
[16] |
H. Yuan, R. Zeier, N. Khaneja and S. Lloyd, Constructing two-qubit gates with minimal couplings, Phys. Rev. A (3), 79 (2009), 4pp.doi: 10.1103/PhysRevA.79.042309. |