Citation: |
[1] |
Cesar O. Aguilar, Local controllability of control-affine systems with quadratic drift and constant control-input vector fields, in "Proceedings of the 2012 IEEE Conference on Decision and Control," (2012), 1877-1882.doi: 10.1109/CDC.2012.6425807. |
[2] |
R. W. Brockett, Nonholonomic regulators, in "Proc. of the 2012 IEEE Conference on Decision and Control," (2012), 1865-1870.doi: 10.1109/CDC.2012.6426321. |
[3] |
P. Brunovský, A classification of controllable linear systems, Kybernetika (Prague), 6 (1970), 173-188. |
[4] |
R. E. Kalman, When is a linear control system optimal?, J. Basic Eng., 86 (1964), 51-60.doi: 10.1115/1.3653115. |
[5] |
J. W. Melody, T. Basar and F. Bullo, On nonlinear controllability of homogeneous systems linear in the control, IEEE Transactions on Automation and Control, 48 (2000), 139-143. |
[6] |
H. Sussmann, A general theorem on local controllability, SIAM J. on Control and Optimization, 25 (1987), 158-194.doi: 10.1137/0325011. |
[7] |
R. W. Brockett, Feedback invariants for nonlinear systems, in "Proceedings of the 1978 IFAC Congress, Helsinki, Finland," Pergamon Press, Oxford, (1978), 1115-1120. |