\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Algebraic characterization of autonomy and controllability of behaviours of spatially invariant systems

Abstract Related Papers Cited by
  • We give algebraic characterizations of the properties of autonomy and of controllability of behaviours of spatially invariant dynamical systems, consisting of distributional solutions $w$, that are periodic in the spatial variables, to a system of partial differential equations $$ M\left(\frac{\partial}{\partial x_1},\cdots, \frac{\partial}{\partial x_d} , \frac{\partial}{\partial t}\right) w=0, $$ corresponding to a polynomial matrix $M\in ({\mathbb{C}}[\xi_1,\dots, \xi_d, \tau])^{m\times n}$.
    Mathematics Subject Classification: Primary: 35A24; Secondary: 93B05, 93C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. A. Ball and O. J. Staffans, Conservative state-space realizations of dissipative system behaviors, Integral Equations Operator Theory, 54 (2006), 151-213.doi: 10.1007/s00020-003-1356-3.

    [2]

    Madhu Belur, Control in a Behavioral Context, Ph.D Thesis, Rijksuniversiteit Groningen, The Netherlands, 2003. Available from: http://www.dissertations.ub.rug.nl/faculties/science/2003/m.n.belur/.

    [3]

    R. W. Carroll, Abstract Methods in Partial Differential Equations, Harper's Series in Modern Mathematics, Harper & Row, New York-London, 1969.

    [4]

    R. F. Curtain, O. V. Iftime and H. J. Zwart, System theoretic properties of a class of spatially invariant systems, Automatica J. IFAC, 45 (2009), 1619-1627.doi: 10.1016/j.automatica.2009.03.005.

    [5]

    R. F. Curtain and A. J. Sasane, On Riccati equations in Banach algebras, SIAM J. Control Optim., 49 (2011), 464-475.doi: 10.1137/100806011.

    [6]

    W. F. Donoghue, Jr., Distributions and Fourier Transforms, Pure and Applied Mathematics, 32, Academic Press, New York-London, 1969.

    [7]

    L. Hörmander, Null solutions of partial differential equations, Arch. Rational Mech. Anal., 4 (1960), 255-261.

    [8]

    L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, Springer-Verlag, Berlin, 1990.

    [9]

    U. Oberst and M. Scheicher, Time-autonomy and time-controllability of discrete multidimensional behaviors, Internat. J. Control, 85 (2012), 990-1009.doi: 10.1080/00207179.2012.673135.

    [10]

    J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach, Texts in Applied Mathematics, 26, Springer-Verlag, New York, 1998.

    [11]

    H. K. Pillai and S. Shankar, A behavioral approach to control of distributed systems, SIAM J. Control Optim., 37 (1999), 388-408.doi: 10.1137/S0363012997321784.

    [12]

    A. J. Sasane, E. G. F. Thomas and J. C. Willems, Time-autonomy versus time-controllability, Systems Control Lett., 45 (2002), 145-153.doi: 10.1016/S0167-6911(01)00174-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return