March  2014, 4(1): 115-124. doi: 10.3934/mcrf.2014.4.115

Algebraic characterization of autonomy and controllability of behaviours of spatially invariant systems

1. 

Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE

Received  August 2012 Revised  December 2012 Published  December 2013

We give algebraic characterizations of the properties of autonomy and of controllability of behaviours of spatially invariant dynamical systems, consisting of distributional solutions $w$, that are periodic in the spatial variables, to a system of partial differential equations $$ M\left(\frac{\partial}{\partial x_1},\cdots, \frac{\partial}{\partial x_d} , \frac{\partial}{\partial t}\right) w=0, $$ corresponding to a polynomial matrix $M\in ({\mathbb{C}}[\xi_1,\dots, \xi_d, \tau])^{m\times n}$.
Citation: Amol Sasane. Algebraic characterization of autonomy and controllability of behaviours of spatially invariant systems. Mathematical Control and Related Fields, 2014, 4 (1) : 115-124. doi: 10.3934/mcrf.2014.4.115
References:
[1]

J. A. Ball and O. J. Staffans, Conservative state-space realizations of dissipative system behaviors, Integral Equations Operator Theory, 54 (2006), 151-213. doi: 10.1007/s00020-003-1356-3.

[2]

Madhu Belur, Control in a Behavioral Context, Ph.D Thesis, Rijksuniversiteit Groningen, The Netherlands, 2003. Available from: http://www.dissertations.ub.rug.nl/faculties/science/2003/m.n.belur/.

[3]

R. W. Carroll, Abstract Methods in Partial Differential Equations, Harper's Series in Modern Mathematics, Harper & Row, New York-London, 1969.

[4]

R. F. Curtain, O. V. Iftime and H. J. Zwart, System theoretic properties of a class of spatially invariant systems, Automatica J. IFAC, 45 (2009), 1619-1627. doi: 10.1016/j.automatica.2009.03.005.

[5]

R. F. Curtain and A. J. Sasane, On Riccati equations in Banach algebras, SIAM J. Control Optim., 49 (2011), 464-475. doi: 10.1137/100806011.

[6]

W. F. Donoghue, Jr., Distributions and Fourier Transforms, Pure and Applied Mathematics, 32, Academic Press, New York-London, 1969.

[7]

L. Hörmander, Null solutions of partial differential equations, Arch. Rational Mech. Anal., 4 (1960), 255-261.

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, Springer-Verlag, Berlin, 1990.

[9]

U. Oberst and M. Scheicher, Time-autonomy and time-controllability of discrete multidimensional behaviors, Internat. J. Control, 85 (2012), 990-1009. doi: 10.1080/00207179.2012.673135.

[10]

J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach, Texts in Applied Mathematics, 26, Springer-Verlag, New York, 1998.

[11]

H. K. Pillai and S. Shankar, A behavioral approach to control of distributed systems, SIAM J. Control Optim., 37 (1999), 388-408. doi: 10.1137/S0363012997321784.

[12]

A. J. Sasane, E. G. F. Thomas and J. C. Willems, Time-autonomy versus time-controllability, Systems Control Lett., 45 (2002), 145-153. doi: 10.1016/S0167-6911(01)00174-8.

show all references

References:
[1]

J. A. Ball and O. J. Staffans, Conservative state-space realizations of dissipative system behaviors, Integral Equations Operator Theory, 54 (2006), 151-213. doi: 10.1007/s00020-003-1356-3.

[2]

Madhu Belur, Control in a Behavioral Context, Ph.D Thesis, Rijksuniversiteit Groningen, The Netherlands, 2003. Available from: http://www.dissertations.ub.rug.nl/faculties/science/2003/m.n.belur/.

[3]

R. W. Carroll, Abstract Methods in Partial Differential Equations, Harper's Series in Modern Mathematics, Harper & Row, New York-London, 1969.

[4]

R. F. Curtain, O. V. Iftime and H. J. Zwart, System theoretic properties of a class of spatially invariant systems, Automatica J. IFAC, 45 (2009), 1619-1627. doi: 10.1016/j.automatica.2009.03.005.

[5]

R. F. Curtain and A. J. Sasane, On Riccati equations in Banach algebras, SIAM J. Control Optim., 49 (2011), 464-475. doi: 10.1137/100806011.

[6]

W. F. Donoghue, Jr., Distributions and Fourier Transforms, Pure and Applied Mathematics, 32, Academic Press, New York-London, 1969.

[7]

L. Hörmander, Null solutions of partial differential equations, Arch. Rational Mech. Anal., 4 (1960), 255-261.

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, Springer-Verlag, Berlin, 1990.

[9]

U. Oberst and M. Scheicher, Time-autonomy and time-controllability of discrete multidimensional behaviors, Internat. J. Control, 85 (2012), 990-1009. doi: 10.1080/00207179.2012.673135.

[10]

J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach, Texts in Applied Mathematics, 26, Springer-Verlag, New York, 1998.

[11]

H. K. Pillai and S. Shankar, A behavioral approach to control of distributed systems, SIAM J. Control Optim., 37 (1999), 388-408. doi: 10.1137/S0363012997321784.

[12]

A. J. Sasane, E. G. F. Thomas and J. C. Willems, Time-autonomy versus time-controllability, Systems Control Lett., 45 (2002), 145-153. doi: 10.1016/S0167-6911(01)00174-8.

[1]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[2]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[3]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[4]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[5]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[6]

N. Kamran, K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 359-378. doi: 10.3934/dcds.1998.4.359

[7]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[8]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[9]

Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252

[10]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

[11]

Luisa Malaguti, Stefania Perrotta, Valentina Taddei. $ L^p $-exact controllability of partial differential equations with nonlocal terms. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021053

[12]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[13]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control and Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[14]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[15]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[16]

Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310

[17]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control and Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[18]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[19]

Teresa Faria, Rubén Figueroa. Positive periodic solutions for systems of impulsive delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022070

[20]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]