Citation: |
[1] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostine, Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim., 42 (2003), 1661-1680.doi: 10.1137/S0363012902417826. |
[2] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostine, Null controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var., 11 (2005), 426-448.doi: 10.1051/cocv:2005013. |
[3] |
F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943.doi: 10.1016/j.jmaa.2005.07.060. |
[4] |
F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.doi: 10.7153/dea-01-24. |
[5] |
F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291.doi: 10.1007/s00028-009-0008-8. |
[6] |
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl. (9), 96 (2011), 555-590.doi: 10.1016/j.matpur.2011.06.005. |
[7] |
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306.doi: 10.3934/mcrf.2011.1.267. |
[8] |
A. Benabdallah, M. Cristofol, P. Gaitan and M. Yamamoto, Inverse problem for a parabolic system with two components by measurements of one component, Appl. Anal., 88 (2009), 683-709.doi: 10.1080/00036810802555490. |
[9] |
O. Bodart, M. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57 (2004), 687-711.doi: 10.1016/j.na.2004.03.012. |
[10] |
A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Soviet Math. Dokl., 17 (1981), 244-247. |
[11] | |
[12] |
M. Chapouly, Contrôlabilité d'Équations Issues de la Mécanique des Fluides, Thèse pour obtenir le grade de Docteur en Mathématiques, Université de Paris 11, 2009. |
[13] |
M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a 2X2 reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573.doi: 10.1088/0266-5611/22/5/003. |
[14] |
M. Cristofol, P. Gaitan, H. Ramoul and M. Yamamoto, Identification of two coefficients with data of one component for a nonlinear parabolic system, Applicable Analysis, 91 (2012), 2073-2081.doi: 10.1080/00036811.2011.583240. |
[15] |
A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41 (2002), 798-819.doi: 10.1137/S0363012901386465. |
[16] |
E. Fernández-Cara, Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var., 2 (1997), 87-103.doi: 10.1051/cocv:1997104. |
[17] |
E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758.doi: 10.1016/j.jfa.2010.06.003. |
[18] |
E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542.doi: 10.1016/j.matpur.2004.02.010. |
[19] |
A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. |
[20] |
M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., 46 (2006), 123-162. |
[21] |
M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.doi: 10.4171/PM/1859. |
[22] |
S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394.doi: 10.1137/060653135. |
[23] |
O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274.doi: 10.2977/prims/1145476103. |
[24] |
O. Yu. Imanuvilov, V. Isakov and M. Yamamoto, An inverse problem for dynamical Lamé systems with two sets of boundary, Comm. Pure Appl. Math., LVI (2003), 1366-1382. |
[25] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. |
[26] |
K. Mauffrey, On the null controllability of a parabolic system with non-constant coefficients by one or two control forces, J. Math. Pures Appl. (9), 99 (2013), 187-210.doi: 10.1016/j.matpur.2012.06.010. |
[27] |
L. Roques and M. Cristofol, The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system, Inverse Problems, 28 (2012), 075007, 12 pp.doi: 10.1088/0266-5611/28/7/075007. |
[28] |
L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72.doi: 10.1080/03605300008821507. |
[29] |
K. Vo-Khac, Distributions, Analyse de Fourier, Opérateurs aux Dérivées Partielles: Cours et Exercices Résolus, avec Une étude Introductive sur des Espaces Vectoriels Topologiques. Tome II, Vuibert, Paris, 1972. |
[30] |
M. Wang, Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion, Math. Biosci., 212 (2008), 149-160.doi: 10.1016/j.mbs.2007.08.008. |