\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal insurance in a changing economy

Abstract Related Papers Cited by
  • We discuss a general problem of optimal strategies for insurance, consumption and investment in a changing economic environment described by a continuous-time regime switching model. We consider the situation of a random investment horizon which depends on the force of mortality of an economic agent. The objective of the agent is to maximize the expected discounted utility of consumption and terminal wealth over a random future lifetime. A verification theorem for the Hamilton-Jacobi-Bellman (HJB) solution related to the optimal consumption, investment and insurance is provided. In the cases of a power utility and an exponential utility, we derive analytical solutions to the optimal strategies. Numerical results are given to illustrate the proposed model and to document the impact of switching regimes on the optimal strategies.
    Mathematics Subject Classification: Primary: 93E20; Secondary: 49l20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems, North Holland, New York-Amsterdam, 1981.

    [2]

    K. J. Arrow, Uncertainty and the welfare economics of medical care, American Economic Review, 53 (1963), 941-973, available at http://www.aeaweb.org/aer/top20/53.5.941-973.pdf.

    [3]

    C. Blanchet-Scalliet, N. E. Karoui, M. Jeanblanc and L. Martellini, Optimal investment and consumption decisions when time-horizon is uncertain, Journal of Mathematical Economics, 44 (2008), 1100-1113.doi: 10.1016/j.jmateco.2007.09.004.

    [4]

    B. Bouchard and H. Pham, Wealth-path dependent utility maximization in incomplete markets, Finance Stochast, 8 (2004), 579-603.doi: 10.1007/s00780-004-0125-8.

    [5]

    E. Briys, Insurance and consumption: The continuous-time case, Journal of Risk and Insurance, 53 (1986), 718-723.doi: 10.2307/252972.

    [6]

    J. Buffington and R. J. Elliott, Regime switching and European options, Stochastic Theory and Control, LNCIS 280, (ed. B. Pasik-Duncan), LNCIS 280, 73-82, Springer-Verlag, Berlin, Heidelberg, 2002.doi: 10.1007/3-540-48022-6_5.

    [7]

    J. Buffington and R. J. Elliott, American options with regime switching, International Journal of Theoretical and Applied Finance, 5 (2002), 497-514.doi: 10.1142/S0219024902001523.

    [8]

    L. Delong, Optimal investment and consumption in the presence of default on a financial market driven by a Levy noise, Ann. Univ. Mariae Curie-Sk?odowska Sect. A, 60 (2006), 1-15.

    [9]

    R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Imation and Control, Applications of Mathematics (New York), 29. Springer-Verlag, New York, 1995.

    [10]

    R. J. Elliott, L. L. Chan and T. K. Siu, Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.doi: 10.1007/s10436-005-0013-z.

    [11]

    R. J. Elliott and J. Hinz, Portfolio analysis, hidden Markov models and chart analysis by PF-Diagrams, International Journal of Theoretical and Applied Finance, 5 (2002), 385-399.

    [12]

    R. J. Elliott, T. K. Siu and L. L. Chan, Pricing volatility swaps under Heston's stochastic volatility model with regime switching, Applied Mathematical Finance, 14 (2007), 41-62.doi: 10.1080/13504860600659222.

    [13]

    H. U. Gerber and E. W. Shiu, Investing for retirement: Optimal capital growth and dynamic asset allocation (with discussions), North American Actuarial Journal, 4 (2000), 42-62.doi: 10.1080/10920277.2000.10595899.

    [14]

    S. M. Goldfeld and R. E. Quandt, The estimation of structural shifts by switching regressions, Annals of Economic and Social Measurement, 2 (1973), 475-485.

    [15]

    C. Gollier, Insurance and precautionary capital accumulation in a continuous-time model, Journal of Risk and Insurance, 61 (1994) 78-95.doi: 10.2307/253425.

    [16]

    X. Guo, Information and option pricings, Quantitative Finance, 1 (2001), 38-44.doi: 10.1080/713665550.

    [17]

    J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57 (1989), 357-384.doi: 10.2307/1912559.

    [18]

    R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.doi: 10.2307/1926560.

    [19]

    R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.doi: 10.1016/0022-0531(71)90038-X.

    [20]

    J. Mossin, Aspects of rational insurance purchasing, Journal of Political Economy, 76 (1968), 553-568.doi: 10.1086/259427.

    [21]

    K. S. Moore and V. R. Young, Optimal insurance in a continuous-time model, Insurance Mathematics and Economics, 39 (2006), 47-68.doi: 10.1016/j.insmatheco.2006.01.009.

    [22]

    R. E. Quandt, The estimation of the parameters of a linear regression system obeying two separate regimes, Journal of the American Statistical Association, 53 (1958), 873-880.doi: 10.1080/01621459.1958.10501484.

    [23]

    H. Schlesinger and C. Gollier, Second-best insurance contract design in an incomplete market, Scandinavian Journal of Economics, 97 (1995), 123-135.

    [24]

    K. L. Teo, D. W. Reid and I. E. Boyd, Stochastic optimal control theory and its computational method, International Journal on Systems Science, 11 (1980), 77-95.doi: 10.1080/00207728008966998.

    [25]

    H. Tong, Some comments on the Canadian lynx data (with discussion), Journal of the Royal Statistical Society, Series A, General, 140 (1977), 432-436.

    [26]

    K. F. C. Yiu, J. Z. Liu, T. K. Siu and W. C. Ching, Optimal portfolios with regime-switching and value-at-risk constraint, Automatica, 46 (2010), 1979-989.doi: 10.1016/j.automatica.2010.02.027.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return