September  2014, 4(3): 263-287. doi: 10.3934/mcrf.2014.4.263

Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients

1. 

Aix-Marseille Université, CNRS, Centrale Marseille, Laboratoire d'Analyse Topologie et Probabilités, UMR 7353, 13453 Marseille, France, France

Received  August 2013 Revised  December 2013 Published  April 2014

In this article we are interested in the controllability with one single control force of parabolic systems with space-dependent zero-order coupling terms. We particularly want to emphasize that, surprisingly enough for parabolic problems, the geometry of the control domain can have an important influence on the controllability properties of the system, depending on the structure of the coupling terms.
    Our analysis is mainly based on a criterion given by Fattorini in [12] (and systematically used in [22] for instance), that reduces the problem to the study of a unique continuation property for elliptic systems. We provide several detailed examples of controllable and non-controllable systems. This work gives theoretical justifications of some numerical observations described in [9].
Citation: Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Mathematical Control and Related Fields, 2014, 4 (3) : 263-287. doi: 10.3934/mcrf.2014.4.263
References:
[1]

F. Alabau-Boussouira, Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls, C. R. Math. Acad. Sci. Paris, 350 (2012), 577-582. doi: 10.1016/j.crma.2012.05.009.

[2]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl., 99 (2013), 544-576. doi: 10.1016/j.matpur.2012.09.012.

[3]

G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations, ESAIM Control Optim. Calc. Var., 14 (2008), 284-293. doi: 10.1051/cocv:2007055.

[4]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457. doi: 10.7153/dea-01-24.

[5]

F. Ammar-Khodja, A. Benabdallah, C. Dupai and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291. doi: 10.1007/s00028-009-0008-8.

[6]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267.

[7]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences, preprint, (2013). Available from: http://hal.archives-ouvertes.fr/hal-00918596.

[8]

A. Benabdallah, M. Cristofol, P. Gaitan and L. de Teresa, Controllability to trajectories for some parabolic systems of three and two equations by one control force, Math. Control Relat. Fields, 4 (2014), 17-44. doi: 10.3934/mcrf.2014.4.17.

[9]

F. Boyer, On the penalized hum approach and its applications to the numerical approximation of null-controls for parabolic problems, ESAIM Proceedings, 41 (2013), 15-58. doi: 10.1051/proc/201341002.

[10]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, preprint, (2012). Available from: http://hal.archives-ouvertes.fr/hal-00743899.

[11]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.

[12]

H. O. Fattorini, Some remarks on complete controllability, SIAM J. Control, 4 (1966), 686-694. doi: 10.1137/0304048.

[13]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003.

[14]

A. Fursikov and O. Yu Imanuvilov, Controllability of Evolution Equations, Lecture Notes, Vol. 34, Seoul National University, Korea, 1996.

[15]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic {PDE}s by one control force, Port. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859.

[16]

J.-M. Ghidaglia, Some backward uniqueness results, Nonlinear Anal., 10 (1986), 777-790. doi: 10.1016/0362-546X(86)90037-4.

[17]

O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., 16 (2010), 247-274. doi: 10.1051/cocv/2008077.

[18]

F. Luca and L. de Teresa, Control of coupled parabolic systems and Diophantine approximations, S$\vec e$MA J., 61 (2013), 1-17. doi: 10.1007/s40324-013-0004-3.

[19]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver, With an appendix by M. V. Keldysh, Translations of Mathematical Monographs, vol. 71, American Mathematical Society, Providence, RI, 1988.

[20]

K. Mauffrey, On the null controllability of a $3\times3$ parabolic system with non-constant coefficients by one or two control forces, J. Math. Pures Appl., 99 (2013), 187-210. doi: 10.1016/j.matpur.2012.06.010.

[21]

S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 31 (1958), 219-239.

[22]

G. Olive, Boundary approximate controllability of some linear parabolic systems, Evol. Equ. Control Theory, 3 (2014), 167-189. Available from: http://hal.archives-ouvertes.fr/hal-00808381. doi: 10.3934/eect.2014.3.167.

[23]

L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations, C. R. Math. Acad. Sci. Paris, 349 (2011), 291-296. doi: 10.1016/j.crma.2011.01.014.

show all references

References:
[1]

F. Alabau-Boussouira, Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls, C. R. Math. Acad. Sci. Paris, 350 (2012), 577-582. doi: 10.1016/j.crma.2012.05.009.

[2]

F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl., 99 (2013), 544-576. doi: 10.1016/j.matpur.2012.09.012.

[3]

G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations, ESAIM Control Optim. Calc. Var., 14 (2008), 284-293. doi: 10.1051/cocv:2007055.

[4]

F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457. doi: 10.7153/dea-01-24.

[5]

F. Ammar-Khodja, A. Benabdallah, C. Dupai and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291. doi: 10.1007/s00028-009-0008-8.

[6]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267.

[7]

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences, preprint, (2013). Available from: http://hal.archives-ouvertes.fr/hal-00918596.

[8]

A. Benabdallah, M. Cristofol, P. Gaitan and L. de Teresa, Controllability to trajectories for some parabolic systems of three and two equations by one control force, Math. Control Relat. Fields, 4 (2014), 17-44. doi: 10.3934/mcrf.2014.4.17.

[9]

F. Boyer, On the penalized hum approach and its applications to the numerical approximation of null-controls for parabolic problems, ESAIM Proceedings, 41 (2013), 15-58. doi: 10.1051/proc/201341002.

[10]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, preprint, (2012). Available from: http://hal.archives-ouvertes.fr/hal-00743899.

[11]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.

[12]

H. O. Fattorini, Some remarks on complete controllability, SIAM J. Control, 4 (1966), 686-694. doi: 10.1137/0304048.

[13]

E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003.

[14]

A. Fursikov and O. Yu Imanuvilov, Controllability of Evolution Equations, Lecture Notes, Vol. 34, Seoul National University, Korea, 1996.

[15]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic {PDE}s by one control force, Port. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859.

[16]

J.-M. Ghidaglia, Some backward uniqueness results, Nonlinear Anal., 10 (1986), 777-790. doi: 10.1016/0362-546X(86)90037-4.

[17]

O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., 16 (2010), 247-274. doi: 10.1051/cocv/2008077.

[18]

F. Luca and L. de Teresa, Control of coupled parabolic systems and Diophantine approximations, S$\vec e$MA J., 61 (2013), 1-17. doi: 10.1007/s40324-013-0004-3.

[19]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver, With an appendix by M. V. Keldysh, Translations of Mathematical Monographs, vol. 71, American Mathematical Society, Providence, RI, 1988.

[20]

K. Mauffrey, On the null controllability of a $3\times3$ parabolic system with non-constant coefficients by one or two control forces, J. Math. Pures Appl., 99 (2013), 187-210. doi: 10.1016/j.matpur.2012.06.010.

[21]

S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 31 (1958), 219-239.

[22]

G. Olive, Boundary approximate controllability of some linear parabolic systems, Evol. Equ. Control Theory, 3 (2014), 167-189. Available from: http://hal.archives-ouvertes.fr/hal-00808381. doi: 10.3934/eect.2014.3.167.

[23]

L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations, C. R. Math. Acad. Sci. Paris, 349 (2011), 291-296. doi: 10.1016/j.crma.2011.01.014.

[1]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[2]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 555-566. doi: 10.3934/naco.2020055

[3]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280

[4]

Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3275-3303. doi: 10.3934/dcdsb.2020062

[5]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[6]

Brooke L. Hollingsworth, R.E. Showalter. Semilinear degenerate parabolic systems and distributed capacitance models. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 59-76. doi: 10.3934/dcds.1995.1.59

[7]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[8]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[9]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[10]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[11]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[12]

Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control and Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465

[13]

Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations and Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167

[14]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control and Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[15]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[16]

Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074

[17]

Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control and Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004

[18]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[19]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[20]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]