-
Previous Article
Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain
- MCRF Home
- This Issue
- Next Article
Exact controllability of scalar conservation laws with strict convex flux
1. | Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Post Bag No 6503, Sharadanagar, Bangalore - 560065, India, India, India |
References:
[1] |
Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux, J. Hyperbolic Differ. Equ., 11 (2014), 477-491. |
[2] |
Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux, J. Hyperbolic Differ. Equ., 9 (2012), 571-611.
doi: 10.1142/S0219891612500191. |
[3] |
Adimurthi and G. D. Veerappa Gowda, Conservation Law with discontinuous flux, J.Math, Kyoto Univ, 43 (2003), 27-70. |
[4] |
F. Ancona, O. Glass and K. T. Nguyen, Lower compactness estimates for scalar balance laws, Comm. Pure Appl. Math, 65 (2012), 1303-1329.
doi: 10.1002/cpa.21406. |
[5] |
F. Ancona and A. Marson, On the attainability set for scalar non linear conservation laws with boundary control, SIAM J.Control Optim, 36 (1998), 290-312.
doi: 10.1137/S0363012996304407. |
[6] |
F. Ancona and A. Marson, Scalar non linear conservation laws with integrable boundary data, Nonlinear Anal, 35 (1999), 687-710.
doi: 10.1016/S0362-546X(97)00697-4. |
[7] |
C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.
doi: 10.1080/03605307908820117. |
[8] |
A. Bressan and A. Marson, A maximum principle for optimally controlled systems of conservation laws, Rend. Sem. Mat. Univ. Padova, 94 (1995), 79-94. |
[9] |
T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 41. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. |
[10] |
M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations, SIAM J. Control Optim, 48 (2009), 1567-1599.
doi: 10.1137/070685749. |
[11] |
J. M. Coron, Global asymptotic stabilization for controllable systems without drift, Mth. Control signals systems, 5 (1992), 295-312.
doi: 10.1007/BF01211563. |
[12] |
C. M. Dafermos, Characteristics in hyperbolic conservations laws, A study of the structure and the asymptotic behavior of solutions, Research notes in maths, Pitman, I (1977), 1-58. |
[13] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, $2^{nd}$ edition, Springer Verlag, Berlin, 2000. |
[14] |
J. I. Diaz, Obstruction and some approximate controllability results for the Burgers equation and related problems, Control of partial differential equations and applications, (Laredo, 1994) Lecture Notes in Pure and Appl. Math, 174, Dekker, New York, (1996), 63-76. |
[15] |
L. C. Evans, Partial Differential Equations, Graduate studies in Mathematics, vol 19, AMS 1998. |
[16] |
E. Fernández-Cara and S. Guerrero, Remarks on the null controllability of the Burgers equation, C. R. Math. Acad. Sci. Paris, 341 (2005), 229-232.
doi: 10.1016/j.crma.2005.06.005. |
[17] |
A. Fursikov and O. Yu. Imanuvilov, On controllability of certain systems simulating a fluid flow, Flow control, (Minneapolis, MN, 1992), IMA Vol. Math. Appl., 68, Springer, New York, (1995), 149-184.
doi: 10.1007/978-1-4612-2526-3_7. |
[18] |
S. S. Ghoshal, Finer Analysis of Characteristic Curves, and Its Applications to Shock Profile, Exact and Optimal Controllability of Conservation Law with Strict convex Fluxes, Ph.D thesis, TIFR CAM, 2012. |
[19] |
O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation, SIAM J. Control optim., 46 (2007), 1211-1238.
doi: 10.1137/060664677. |
[20] |
E. Godleweski and P. A. Raviant, Hyperbolic Systems of Conservation Laws, Mathematiques and Applications, 3/4, Ellipses, Paris, 1991. |
[21] |
S. Guerrero and O. Y. Immunauvilov, Remarks on global controllability for the Burgers equation with two control forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 897-906.
doi: 10.1016/j.anihpc.2006.06.010. |
[22] |
E. Hopf, The partial differential equation $u_t + u u_x = \mu u_{x x}$, Comm. Pure Appl. Math, 3 (1950), 201-230. |
[23] |
T. Horsin, On the controllability of the Burger equation, ESIAM, Control optimization and Calculus of variations, 3 (1998), 83-95.
doi: 10.1051/cocv:1998103. |
[24] |
K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for the solution of Convex conservation laws with boundary condition, Duke Math.J., 62 (1991), 401-416.
doi: 10.1215/S0012-7094-91-06216-2. |
[25] |
S. N. Kružkov, First order quasilinear equations with several independent variables, (Russian), Mat. Sb., 81 (1970), 228-255. English transl. in Math. USSR Sb., 10 (1970), 217-243. |
[26] |
P. D. Lax, Hyperbolic systems of conservation Laws II, comm Pure Appl. Math, 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406. |
show all references
References:
[1] |
Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux, J. Hyperbolic Differ. Equ., 11 (2014), 477-491. |
[2] |
Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux, J. Hyperbolic Differ. Equ., 9 (2012), 571-611.
doi: 10.1142/S0219891612500191. |
[3] |
Adimurthi and G. D. Veerappa Gowda, Conservation Law with discontinuous flux, J.Math, Kyoto Univ, 43 (2003), 27-70. |
[4] |
F. Ancona, O. Glass and K. T. Nguyen, Lower compactness estimates for scalar balance laws, Comm. Pure Appl. Math, 65 (2012), 1303-1329.
doi: 10.1002/cpa.21406. |
[5] |
F. Ancona and A. Marson, On the attainability set for scalar non linear conservation laws with boundary control, SIAM J.Control Optim, 36 (1998), 290-312.
doi: 10.1137/S0363012996304407. |
[6] |
F. Ancona and A. Marson, Scalar non linear conservation laws with integrable boundary data, Nonlinear Anal, 35 (1999), 687-710.
doi: 10.1016/S0362-546X(97)00697-4. |
[7] |
C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.
doi: 10.1080/03605307908820117. |
[8] |
A. Bressan and A. Marson, A maximum principle for optimally controlled systems of conservation laws, Rend. Sem. Mat. Univ. Padova, 94 (1995), 79-94. |
[9] |
T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 41. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. |
[10] |
M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations, SIAM J. Control Optim, 48 (2009), 1567-1599.
doi: 10.1137/070685749. |
[11] |
J. M. Coron, Global asymptotic stabilization for controllable systems without drift, Mth. Control signals systems, 5 (1992), 295-312.
doi: 10.1007/BF01211563. |
[12] |
C. M. Dafermos, Characteristics in hyperbolic conservations laws, A study of the structure and the asymptotic behavior of solutions, Research notes in maths, Pitman, I (1977), 1-58. |
[13] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, $2^{nd}$ edition, Springer Verlag, Berlin, 2000. |
[14] |
J. I. Diaz, Obstruction and some approximate controllability results for the Burgers equation and related problems, Control of partial differential equations and applications, (Laredo, 1994) Lecture Notes in Pure and Appl. Math, 174, Dekker, New York, (1996), 63-76. |
[15] |
L. C. Evans, Partial Differential Equations, Graduate studies in Mathematics, vol 19, AMS 1998. |
[16] |
E. Fernández-Cara and S. Guerrero, Remarks on the null controllability of the Burgers equation, C. R. Math. Acad. Sci. Paris, 341 (2005), 229-232.
doi: 10.1016/j.crma.2005.06.005. |
[17] |
A. Fursikov and O. Yu. Imanuvilov, On controllability of certain systems simulating a fluid flow, Flow control, (Minneapolis, MN, 1992), IMA Vol. Math. Appl., 68, Springer, New York, (1995), 149-184.
doi: 10.1007/978-1-4612-2526-3_7. |
[18] |
S. S. Ghoshal, Finer Analysis of Characteristic Curves, and Its Applications to Shock Profile, Exact and Optimal Controllability of Conservation Law with Strict convex Fluxes, Ph.D thesis, TIFR CAM, 2012. |
[19] |
O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation, SIAM J. Control optim., 46 (2007), 1211-1238.
doi: 10.1137/060664677. |
[20] |
E. Godleweski and P. A. Raviant, Hyperbolic Systems of Conservation Laws, Mathematiques and Applications, 3/4, Ellipses, Paris, 1991. |
[21] |
S. Guerrero and O. Y. Immunauvilov, Remarks on global controllability for the Burgers equation with two control forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 897-906.
doi: 10.1016/j.anihpc.2006.06.010. |
[22] |
E. Hopf, The partial differential equation $u_t + u u_x = \mu u_{x x}$, Comm. Pure Appl. Math, 3 (1950), 201-230. |
[23] |
T. Horsin, On the controllability of the Burger equation, ESIAM, Control optimization and Calculus of variations, 3 (1998), 83-95.
doi: 10.1051/cocv:1998103. |
[24] |
K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for the solution of Convex conservation laws with boundary condition, Duke Math.J., 62 (1991), 401-416.
doi: 10.1215/S0012-7094-91-06216-2. |
[25] |
S. N. Kružkov, First order quasilinear equations with several independent variables, (Russian), Mat. Sb., 81 (1970), 228-255. English transl. in Math. USSR Sb., 10 (1970), 217-243. |
[26] |
P. D. Lax, Hyperbolic systems of conservation Laws II, comm Pure Appl. Math, 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406. |
[1] |
Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i |
[2] |
Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411 |
[3] |
Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295 |
[4] |
Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461 |
[5] |
Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 |
[6] |
María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207 |
[7] |
Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 |
[8] |
Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493 |
[9] |
Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026 |
[10] |
Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917 |
[11] |
Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231 |
[12] |
Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623 |
[13] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[14] |
Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 |
[15] |
Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 |
[16] |
Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121 |
[17] |
Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022061 |
[18] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[19] |
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 |
[20] |
Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]