-
Previous Article
Asymptotic stability of Webster-Lokshin equation
- MCRF Home
- This Issue
-
Next Article
Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain
Controllability of fast diffusion coupled parabolic systems
1. | BCAM - Basque Center for Applied Mathematics, Mazarredo 14, E-48009 Bilbao, Basque Country, Spain |
2. | Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie - Paris 6, Boîte Corrier 187, F-75252, Paris Cedex 05, France |
3. | Laboratoire de Mathématiques de Versailles, Université de Versailles - St. Quentin, 45 Avenue des Etats Unis, 78035 Versailles |
References:
[1] |
F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943.
doi: 10.1016/j.jmaa.2005.07.060. |
[2] |
M. Bendahmane and F. W. Chaves-Silva, Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model,, preprint, ().
|
[3] |
J.-M. Coron and S. Guerrero, A singular optimal control: A linear 1-D parabolic hyperbolic example, Asymptot. Analisys, 44 (2005), 237-257. |
[4] |
E. Fernandéz-Cara, J. Limaco and S. B. de Menezes, Null controllability for a parabolic-elliptic coupled system, Bull. Braz. Math. Soc. (N.S.), 44 (2013), 285-308.
doi: 10.1007/s00574-013-0014-x. |
[5] |
A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34, Research Institute of Mathematics, Seoul National University, Seoul, 1996. |
[6] |
O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit, J. Funct. Analysis, 258 (2010), 852-868.
doi: 10.1016/j.jfa.2009.06.035. |
[7] |
M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., 46 (2006), 123-162. |
[8] |
S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394.
doi: 10.1137/060653135. |
[9] |
S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations, 32 (2007), 1813-1836.
doi: 10.1080/03605300701743756. |
[10] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver, 105 (2003), 103-165. |
[11] |
A. Lopes, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations, J. Math. Pures Appl., 79 (2000), 741-808.
doi: 10.1016/S0021-7824(99)00144-0. |
[12] |
J.-L. Lions, Some Methods in Mathematical Analysis of System and their Control, Science Press, Beijing, China, Gordon and Breach, New York, 1981. |
[13] |
J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications, volumes 1, 2 et 3, Dunod, Paris, 1968. |
show all references
References:
[1] |
F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943.
doi: 10.1016/j.jmaa.2005.07.060. |
[2] |
M. Bendahmane and F. W. Chaves-Silva, Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model,, preprint, ().
|
[3] |
J.-M. Coron and S. Guerrero, A singular optimal control: A linear 1-D parabolic hyperbolic example, Asymptot. Analisys, 44 (2005), 237-257. |
[4] |
E. Fernandéz-Cara, J. Limaco and S. B. de Menezes, Null controllability for a parabolic-elliptic coupled system, Bull. Braz. Math. Soc. (N.S.), 44 (2013), 285-308.
doi: 10.1007/s00574-013-0014-x. |
[5] |
A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34, Research Institute of Mathematics, Seoul National University, Seoul, 1996. |
[6] |
O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit, J. Funct. Analysis, 258 (2010), 852-868.
doi: 10.1016/j.jfa.2009.06.035. |
[7] |
M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., 46 (2006), 123-162. |
[8] |
S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394.
doi: 10.1137/060653135. |
[9] |
S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations, 32 (2007), 1813-1836.
doi: 10.1080/03605300701743756. |
[10] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver, 105 (2003), 103-165. |
[11] |
A. Lopes, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations, J. Math. Pures Appl., 79 (2000), 741-808.
doi: 10.1016/S0021-7824(99)00144-0. |
[12] |
J.-L. Lions, Some Methods in Mathematical Analysis of System and their Control, Science Press, Beijing, China, Gordon and Breach, New York, 1981. |
[13] |
J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications, volumes 1, 2 et 3, Dunod, Paris, 1968. |
[1] |
Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687 |
[2] |
El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations and Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441 |
[3] |
Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control and Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203 |
[4] |
Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control and Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1 |
[5] |
Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020 |
[6] |
Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control and Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031 |
[7] |
J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136 |
[8] |
Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699 |
[9] |
Lin Yan, Bin Wu. Null controllability for a class of stochastic singular parabolic equations with the convection term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3213-3240. doi: 10.3934/dcdsb.2021182 |
[10] |
Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks and Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695 |
[11] |
Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control and Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001 |
[12] |
Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639 |
[13] |
Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3275-3303. doi: 10.3934/dcdsb.2020062 |
[14] |
Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040 |
[15] |
El Mustapha Ait Ben Hassi, Mohamed Fadili, Lahcen Maniar. Controllability of a system of degenerate parabolic equations with non-diagonalizable diffusion matrix. Mathematical Control and Related Fields, 2020, 10 (3) : 623-642. doi: 10.3934/mcrf.2020013 |
[16] |
Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force. Evolution Equations and Control Theory, 2021, 10 (3) : 545-573. doi: 10.3934/eect.2020080 |
[17] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[18] |
André da Rocha Lopes, Juan Límaco. Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains. Evolution Equations and Control Theory, 2022, 11 (3) : 749-779. doi: 10.3934/eect.2021024 |
[19] |
Nicolas Hegoburu, Marius Tucsnak. Null controllability of the Lotka-McKendrick system with spatial diffusion. Mathematical Control and Related Fields, 2018, 8 (3&4) : 707-720. doi: 10.3934/mcrf.2018030 |
[20] |
Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]