Citation: |
[1] |
B. d'Andréa-Novel, F. Boustany, F. Conrad and B. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane, Mathematics of Control, Signals, and Systems, 7 (1994), 1-22.doi: 10.1007/BF01211483. |
[2] |
W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Am. Math. Soc., 306 (1988), 837-852.doi: 10.1090/S0002-9947-1988-0933321-3. |
[3] |
D. Z. Arov and O. J. Staffans, The infinite-dimensional continuous time Kalman-Yakubovich-Popov inequality, The extended field of operator theory, Oper. Theory Adv. Appl., Birkhäuser, Basel, 171 (2007), 37-72.doi: 10.1007/978-3-7643-7980-3_3. |
[4] |
C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evolution Equation, 8 (2008), 765-780.doi: 10.1007/s00028-008-0424-1. |
[5] |
A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455-478.doi: 10.1007/s00208-009-0439-0. |
[6] |
S. Boyd, L. El Ghaoui, E. Féron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, volume 15 of {Studies in Applied Mathematics}. SIAM, 1994.doi: 10.1137/1.9781611970777. |
[7] |
M. Bruneau, Ph. Herzog, J. Kergomard and J.-D. Polack, General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries, Wave Motion, 11 (1989), 441-451.doi: 10.1016/0165-2125(89)90018-8. |
[8] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13, Clarendon Press, Oxford, 1998. |
[9] |
F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 11 (1994), 485-515. |
[10] |
J.-M. Coron, Control and Nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, 2007. |
[11] |
R. F. Curtain, Old and new perspectives on the positive-real lemma in systems and control theory, Z. Angew. Math. Mech., 79 (1999), 579-590.doi: 10.1002/(SICI)1521-4001(199909)79:9<579::AID-ZAMM579>3.0.CO;2-8. |
[12] |
R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, vol. 21, Springer Verlag, 1995.doi: 10.1007/978-1-4612-4224-6. |
[13] |
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5, chapter XVI, Springer-Verlag, Berlin, 1984.doi: 10.1007/978-3-642-58090-1. |
[14] |
H. Haddar and D. Matignon, Theoretical and Numerical Analysis of the Webster-Lokshin Model, Research. Report, RR-6558, Institut National de la Recherche en Informatique et Automatique, INRIA, 2008. |
[15] |
H. Haddar, J.-R. Li and D. Matignon, Efficient solution of a wave equation with fractional order dissipative terms, Journal of Computational and Applied Mathematics, 234 (2010), 2003-2010.doi: 10.1016/j.cam.2009.08.051. |
[16] |
Th. Hélie, Unidimensional models of the acoustic propagation in axisymmetric waveguides, J. Acoust. Soc. Amer., 114 (2003), 2633-2647. |
[17] |
A. A. Lokshin, Wave equation with singular retarded time, Dokl. Akad. Nauk SSSR, 240 (1978), 43-46. (in Russian). |
[18] |
A. A. Lokshin and V. E. Rok, Fundamental solutions of the wave equation with retarded time, Dokl. Akad. Nauk SSSR, 239 (1978), 1305-1308. (in Russian). |
[19] |
Z. H. Luo, B. Z. Guo and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications, Communications and Control Engineering. Springer Verlag, 1999.doi: 10.1007/978-1-4471-0419-3. |
[20] |
Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces, Stud. Math., 88 (1988), 37-42. |
[21] |
D. Matignon, Stability properties for generalized fractional differential systems, ESAIM: Proc., 5 (1998), 145-158.doi: 10.1051/proc:1998004. |
[22] |
D. Matignon, Asymptotic stability of the Webster-Lokshin model, in Mathematical Theory of Networks and Systems, 11 p. CD-Rom (invited session), July 2006. |
[23] |
D. Matignon, An introduction to fractional calculus, in Scaling, Fractals and Wavelets, P. Abry, P. Gonçalvès and J. Lévy-Véhel, eds., Digital Signal and Image Processing Series, ISTE-Wiley, 7 (2009), 237-278.doi: 10.1002/9780470611562.ch7. |
[24] |
D. Matignon and B. d'Andréa-Novel, Spectral and time-domain consequences of an integro-differential perturbation of the wave PDE, in Third int. conf. on math. and num. aspects of wave propagation phenomena, (1995), 769-771. |
[25] |
D. Matignon, J. Audounet and G. Montseny, Energy decay for wave equations with damping of fractional order, in Fourth int. conf. on math. and num. aspects of wave propagation phenomena, (1998), 638-640. |
[26] |
D. Matignon and Ch. Prieur, Asymptotic stability of linear conservative systems when coupled with diffusive systems, ESAIM: Control, Optim. Cal. Var., 11 (2005), 487-507.doi: 10.1051/cocv:2005016. |
[27] |
G. Montseny, Diffusive representation of pseudo-differential time-operators, ESAIM: Proc., 5 (1998), 159-175.doi: 10.1051/proc:1998005. |
[28] |
J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Advances in Mathematics, 22 (1976), 278-304.doi: 10.1016/0001-8708(76)90096-7. |
[29] |
J.-D. Polack, Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process, J. Acoustique, 4 (1991), 47-67. |
[30] |
A. Rantzer, On the Kalman-Yakubovich-Popov lemma, Systems & Control Letters, 28 (1996), 7-10.doi: 10.1016/0167-6911(95)00063-1. |
[31] |
O. J. Staffans, Well-posedness and stabilizability of a viscoelastic equation in energy space, Trans. Amer. Math. Soc., 345 (1994), 527-575.doi: 10.1090/S0002-9947-1994-1264153-X. |
[32] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, 2009.doi: 10.1007/978-3-7643-8994-9. |