\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic stability of Webster-Lokshin equation

Abstract Related Papers Cited by
  • The Webster-Lokshin equation is a partial differential equation considered in this paper. It models the sound velocity in an acoustic domain. The dynamics contains linear fractional derivatives which can admit an infinite dimensional representation of diffusive type. The boundary conditions are described by impedance condition, which can be represented by two finite dimensional systems. Under the physical assumptions, there is a natural energy inequality. However, due to a lack of precompactness of the solutions, the LaSalle invariance principle can not be applied. The asymptotic stability of the system is proved by studying the resolvent equation, and by using the Arendt-Batty stability condition.
    Mathematics Subject Classification: 35B35, 93C20, 93D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. d'Andréa-Novel, F. Boustany, F. Conrad and B. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane, Mathematics of Control, Signals, and Systems, 7 (1994), 1-22.doi: 10.1007/BF01211483.

    [2]

    W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Am. Math. Soc., 306 (1988), 837-852.doi: 10.1090/S0002-9947-1988-0933321-3.

    [3]

    D. Z. Arov and O. J. Staffans, The infinite-dimensional continuous time Kalman-Yakubovich-Popov inequality, The extended field of operator theory, Oper. Theory Adv. Appl., Birkhäuser, Basel, 171 (2007), 37-72.doi: 10.1007/978-3-7643-7980-3_3.

    [4]

    C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evolution Equation, 8 (2008), 765-780.doi: 10.1007/s00028-008-0424-1.

    [5]

    A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455-478.doi: 10.1007/s00208-009-0439-0.

    [6]

    S. Boyd, L. El Ghaoui, E. Féron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, volume 15 of {Studies in Applied Mathematics}. SIAM, 1994.doi: 10.1137/1.9781611970777.

    [7]

    M. Bruneau, Ph. Herzog, J. Kergomard and J.-D. Polack, General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries, Wave Motion, 11 (1989), 441-451.doi: 10.1016/0165-2125(89)90018-8.

    [8]

    T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13, Clarendon Press, Oxford, 1998.

    [9]

    F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 11 (1994), 485-515.

    [10]

    J.-M. Coron, Control and Nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, 2007.

    [11]

    R. F. Curtain, Old and new perspectives on the positive-real lemma in systems and control theory, Z. Angew. Math. Mech., 79 (1999), 579-590.doi: 10.1002/(SICI)1521-4001(199909)79:9<579::AID-ZAMM579>3.0.CO;2-8.

    [12]

    R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, vol. 21, Springer Verlag, 1995.doi: 10.1007/978-1-4612-4224-6.

    [13]

    R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5, chapter XVI, Springer-Verlag, Berlin, 1984.doi: 10.1007/978-3-642-58090-1.

    [14]

    H. Haddar and D. Matignon, Theoretical and Numerical Analysis of the Webster-Lokshin Model, Research. Report, RR-6558, Institut National de la Recherche en Informatique et Automatique, INRIA, 2008.

    [15]

    H. Haddar, J.-R. Li and D. Matignon, Efficient solution of a wave equation with fractional order dissipative terms, Journal of Computational and Applied Mathematics, 234 (2010), 2003-2010.doi: 10.1016/j.cam.2009.08.051.

    [16]

    Th. Hélie, Unidimensional models of the acoustic propagation in axisymmetric waveguides, J. Acoust. Soc. Amer., 114 (2003), 2633-2647.

    [17]

    A. A. Lokshin, Wave equation with singular retarded time, Dokl. Akad. Nauk SSSR, 240 (1978), 43-46. (in Russian).

    [18]

    A. A. Lokshin and V. E. Rok, Fundamental solutions of the wave equation with retarded time, Dokl. Akad. Nauk SSSR, 239 (1978), 1305-1308. (in Russian).

    [19]

    Z. H. Luo, B. Z. Guo and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications, Communications and Control Engineering. Springer Verlag, 1999.doi: 10.1007/978-1-4471-0419-3.

    [20]

    Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces, Stud. Math., 88 (1988), 37-42.

    [21]

    D. Matignon, Stability properties for generalized fractional differential systems, ESAIM: Proc., 5 (1998), 145-158.doi: 10.1051/proc:1998004.

    [22]

    D. Matignon, Asymptotic stability of the Webster-Lokshin model, in Mathematical Theory of Networks and Systems, 11 p. CD-Rom (invited session), July 2006.

    [23]

    D. Matignon, An introduction to fractional calculus, in Scaling, Fractals and Wavelets, P. Abry, P. Gonçalvès and J. Lévy-Véhel, eds., Digital Signal and Image Processing Series, ISTE-Wiley, 7 (2009), 237-278.doi: 10.1002/9780470611562.ch7.

    [24]

    D. Matignon and B. d'Andréa-Novel, Spectral and time-domain consequences of an integro-differential perturbation of the wave PDE, in Third int. conf. on math. and num. aspects of wave propagation phenomena, (1995), 769-771.

    [25]

    D. Matignon, J. Audounet and G. Montseny, Energy decay for wave equations with damping of fractional order, in Fourth int. conf. on math. and num. aspects of wave propagation phenomena, (1998), 638-640.

    [26]

    D. Matignon and Ch. Prieur, Asymptotic stability of linear conservative systems when coupled with diffusive systems, ESAIM: Control, Optim. Cal. Var., 11 (2005), 487-507.doi: 10.1051/cocv:2005016.

    [27]

    G. Montseny, Diffusive representation of pseudo-differential time-operators, ESAIM: Proc., 5 (1998), 159-175.doi: 10.1051/proc:1998005.

    [28]

    J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Advances in Mathematics, 22 (1976), 278-304.doi: 10.1016/0001-8708(76)90096-7.

    [29]

    J.-D. Polack, Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process, J. Acoustique, 4 (1991), 47-67.

    [30]

    A. Rantzer, On the Kalman-Yakubovich-Popov lemma, Systems & Control Letters, 28 (1996), 7-10.doi: 10.1016/0167-6911(95)00063-1.

    [31]

    O. J. Staffans, Well-posedness and stabilizability of a viscoelastic equation in energy space, Trans. Amer. Math. Soc., 345 (1994), 527-575.doi: 10.1090/S0002-9947-1994-1264153-X.

    [32]

    M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, 2009.doi: 10.1007/978-3-7643-8994-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return