March  2015, 5(1): 177-189. doi: 10.3934/mcrf.2015.5.177

Inverse problems for the fourth order Schrödinger equation on a finite domain

1. 

School of Mathematics, Laboratory of Mathematics and Complex Systems, Beijing Normal University, 100875 Beijing, China

Received  April 2014 Revised  September 2014 Published  January 2015

In this paper we establish a global Carleman estimate for the fourth order Schrödinger equation with potential posed on a $1-d$ finite domain. The Carleman estimate is used to prove the Lipschitz stability for an inverse problem consisting in recovering a stationary potential in the Schrödinger equation from boundary measurements.
Citation: Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control and Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177
References:
[1]

L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554. doi: 10.1088/0266-5611/18/6/307.

[2]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195. doi: 10.1016/j.jfa.2009.06.010.

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397. doi: 10.1137/100784278.

[4]

L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse Ill-Posed Probl., 16 (2008), 127-146. doi: 10.1515/JIIP.2008.009.

[5]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

[6]

S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254 (2008), 3037-3078. doi: 10.1016/j.jfa.2008.03.005.

[7]

G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles, Inverse Problems, 19 (2003), 985-996. doi: 10.1088/0266-5611/19/4/313.

[8]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.

[9]

X. Fu, Sharp observability inequalities for the 1-D plate equation with a potential, Chin. Ann. Math. Ser. B., 33 (2012), 91-106. doi: 10.1007/s11401-011-0689-5.

[10]

C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265. doi: 10.1016/j.jmaa.2005.06.091.

[11]

L. Ignat, A. F. Pazoto and L. Rosier, Inverse problem for the heat equation and the Schrödinger equation on a tree, Inverse Problems, 28 (2012), 015011, 30 pp. doi: 10.1088/0266-5611/28/1/015011.

[12]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336-R1339. doi: 10.1103/PhysRevE.53.R1336.

[13]

V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. Rev. D, 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6.

[14]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. $H^1(\Omega)$-estimates, J. Inverse Ill-Posed Probl., 12 (2004), 43-123. doi: 10.1163/156939404773972761.

[15]

E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM J. Control Optim., 32 (1994), 24-34. doi: 10.1137/S0363012991223145.

[16]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444. doi: 10.1088/0266-5611/17/5/313.

[17]

A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017, 18 pp. doi: 10.1088/0266-5611/24/1/015017.

[18]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225. doi: 10.4310/DPDE.2007.v4.n3.a1.

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[20]

B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517. doi: 10.1016/j.jfa.2008.11.009.

[21]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98. doi: 10.1016/S0021-7824(99)80010-5.

[22]

G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality, Chin. Ann. Math. Ser. B., 31 (2010), 555-578. doi: 10.1007/s11401-010-0585-4.

[23]

X. Zhang, Exact controllability of semilinear plate equations, Asympt. Anal., 27 (2001), 95-125.

[24]

C. Zheng and Z. Zhou, Exact controllability for the fourth order Schrödinger equation, Chin. Ann. Math. Ser. B., 33 (2012), 395-404. doi: 10.1007/s11401-012-0711-6.

[25]

Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017.

show all references

References:
[1]

L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554. doi: 10.1088/0266-5611/18/6/307.

[2]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195. doi: 10.1016/j.jfa.2009.06.010.

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397. doi: 10.1137/100784278.

[4]

L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse Ill-Posed Probl., 16 (2008), 127-146. doi: 10.1515/JIIP.2008.009.

[5]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

[6]

S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems, J. Funct. Anal., 254 (2008), 3037-3078. doi: 10.1016/j.jfa.2008.03.005.

[7]

G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles, Inverse Problems, 19 (2003), 985-996. doi: 10.1088/0266-5611/19/4/313.

[8]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.

[9]

X. Fu, Sharp observability inequalities for the 1-D plate equation with a potential, Chin. Ann. Math. Ser. B., 33 (2012), 91-106. doi: 10.1007/s11401-011-0689-5.

[10]

C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265. doi: 10.1016/j.jmaa.2005.06.091.

[11]

L. Ignat, A. F. Pazoto and L. Rosier, Inverse problem for the heat equation and the Schrödinger equation on a tree, Inverse Problems, 28 (2012), 015011, 30 pp. doi: 10.1088/0266-5611/28/1/015011.

[12]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336-R1339. doi: 10.1103/PhysRevE.53.R1336.

[13]

V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. Rev. D, 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6.

[14]

I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. $H^1(\Omega)$-estimates, J. Inverse Ill-Posed Probl., 12 (2004), 43-123. doi: 10.1163/156939404773972761.

[15]

E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM J. Control Optim., 32 (1994), 24-34. doi: 10.1137/S0363012991223145.

[16]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444. doi: 10.1088/0266-5611/17/5/313.

[17]

A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017, 18 pp. doi: 10.1088/0266-5611/24/1/015017.

[18]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225. doi: 10.4310/DPDE.2007.v4.n3.a1.

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[20]

B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517. doi: 10.1016/j.jfa.2008.11.009.

[21]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98. doi: 10.1016/S0021-7824(99)80010-5.

[22]

G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality, Chin. Ann. Math. Ser. B., 31 (2010), 555-578. doi: 10.1007/s11401-010-0585-4.

[23]

X. Zhang, Exact controllability of semilinear plate equations, Asympt. Anal., 27 (2001), 95-125.

[24]

C. Zheng and Z. Zhou, Exact controllability for the fourth order Schrödinger equation, Chin. Ann. Math. Ser. B., 33 (2012), 395-404. doi: 10.1007/s11401-012-0711-6.

[25]

Z. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017.

[1]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[2]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[3]

Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations and Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023

[4]

Shuai Zhang, Shaopeng Xu. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3367-3385. doi: 10.3934/cpaa.2020149

[5]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[6]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[7]

Editorial Office. Retraction: The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3785-3785. doi: 10.3934/cpaa.2020167

[8]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[9]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[10]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[11]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[14]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[15]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[16]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[17]

Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122

[18]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2721-2757. doi: 10.3934/dcdsb.2021156

[19]

Roberto de A. Capistrano–Filho, Márcio Cavalcante, Fernando A. Gallego. Forcing operators on star graphs applied for the cubic fourth order Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3399-3434. doi: 10.3934/dcdsb.2021190

[20]

Yanpeng Jin, Ying Fu. Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2775-2797. doi: 10.3934/cpaa.2022072

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (255)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]