Advanced Search
Article Contents
Article Contents

Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation

Abstract Related Papers Cited by
  • In this paper, we study a class of time-inconsistent optimal control problems with random coefficients. By the method of multi-person differential games, a family of parameterized backward stochastic partial differential equations, called the stochastic equilibrium Hamilton-Jacobi-Bellman equation, is derived for the equilibrium value function of this problem. Under appropriate conditions, we obtain the wellposedness of such an equation and construct the time-consistent equilibrium strategy of closed-loop. Besides, we investigate the linear-quadratic problem as a special and important case.
    Mathematics Subject Classification: Primary: 93E20; Secondary: 60H15.


    \begin{equation} \\ \end{equation}
  • [1]

    T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problem, work in progress.


    T. Björk, A. Murgoci and X. Y. Zhou, Mean variance portfolio optimization with state dependent risk aversion, Math. Finance, 24 (2014), 1-24.doi: 10.1111/j.1467-9965.2011.00515.x.


    I. Ekeland and T. Pirvu, Investment and consumption without commitment, Math. Finan. Econ., 2 (2008), 57-86.doi: 10.1007/s11579-008-0014-6.


    I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent, Math. Finan. Econ., 4 (2010), 29-55.doi: 10.1007/s11579-010-0034-x.


    I. Ekeland, O. Mbodji and T. Pirvu, Time-consistent portfolio management, SIAM J. Financial Math., 3 (2012), 1-32.doi: 10.1137/100810034.


    S. Goldman, Consistent plans, Review of Economic Studies, 47 (1980), 533-537.doi: 10.2307/2297304.


    Y. Hu, H. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548-1572.doi: 10.1137/110853960.


    J. Ma and J. M. Yong, On linear, degenerate backward stochastic partial differential equations, Probab. Theory Related Fields, 113 (1999), 135-170.doi: 10.1007/s004400050205.


    J. Ma, H. Yin and J. F. Zhang, On non-Markovian forward-backward SDEs and backward stochastic PDEs, Stochastic Processes and their Applications, 122 (2012), 3980-4004.doi: 10.1016/j.spa.2012.08.002.


    J. Ma, Z. Wu, D. T. Zhang and J. F. Zhang, On wellposedness of forward-backward SDEs-a unified approach, Ann. Appl. Probab., 25(2015), 2168-2214.


    I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and David Hume, History of Political Economy, 35 (2003), 241-268.doi: 10.1215/00182702-35-2-241.


    E. Pardoux, Equations Aux Derivées Partielles Stochastiques Non Linéaires Monotones, Thèse d'Etat a l'Université Paris Sud, Paris, FR, 1975.


    B. Peleg and M. Yaari, On the existence of a consistent course of action when tastes are changing, Review of Economic Studies, 40 (1973), 391-401.doi: 10.2307/2296458.


    S. G. Peng, Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control and Optimization, 30 (1992), 284-304.doi: 10.1137/0330018.


    R. Pollak, Consistent planning, Rev. Econ. Stud., 35 (1968), 201-208.doi: 10.2307/2296548.


    R. Strotz, Myopia and inconsistency in dynamic utility maximization, Rev. Econ. Stud., 23 (1955), 165-180.doi: 10.2307/2295722.


    J. M. Yong, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Related Fields, 1 (2011), 83-118.doi: 10.3934/mcrf.2011.1.83.


    J. M. Yong, Deterministic time-inconsistent optimal control problems-An essentially cooperative approach, Acta Math. Appl. Sinica Engl. Ser., 28 (2012), 1-30.doi: 10.1007/s10255-012-0120-3.


    J. M. Yong, Time-inconsistent optimal control problems and the Equilibrium HJB equation, Mathematical Control and Related Fields, 2 (2012), 271-329.doi: 10.3934/mcrf.2012.2.271.

  • 加载中

Article Metrics

HTML views() PDF downloads(318) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint