Advanced Search
Article Contents
Article Contents

Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation

Abstract Related Papers Cited by
  • We study a damped semi-linear wave equation in a bounded domain of $\mathbb{R}^3$ with smooth boundary. It is proved that any $H^2$-smooth solution can be stabilised locally by a finite-dimensional feedback control supported by a given open subset satisfying a geometric condition. The proof is based on an investigation of the linearised equation, for which we construct a stabilising control satisfying the required properties. We next prove that the same control stabilises locally the non-linear problem.
    Mathematics Subject Classification: Primary: 35L71, 93B52; Secondary: 93B07.


    \begin{equation} \\ \end{equation}
  • [1]

    C. Bardos, G. Lebeau and J. Rauch, Un exemple d'utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques, Rend. Sem. Mat. Univ. Politec. Torino (1988), Special Issue, 11-31 (1989).


    C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.doi: 10.1137/0330055.


    V. Barbu, S. S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.doi: 10.1137/100785739.


    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing, Amsterdam, 1992.


    W. C. Chewning, Controllability of the nonlinear wave equation in several space variables, SIAM J. Control Optim., 14 (1976), 19-25.doi: 10.1137/0314002.


    J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations, Commun. Contemp. Math., 8 (2006), 535-567.doi: 10.1142/S0219199706002209.


    B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z., 254 (2006), 729-749.doi: 10.1007/s00209-006-0005-3.


    B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time, SIAM J. Control Optim., 48 (2009), 521-550.doi: 10.1137/070712067.


    B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup. (4), 36 (2003), 525-551.doi: 10.1016/S0012-9593(03)00021-1.


    T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.doi: 10.1016/j.anihpc.2006.07.005.


    H. O. Fattorini, Local controllability of a nonlinear wave equation, Math. Systems Theory, 9 (1975), 30-45.doi: 10.1007/BF01698123.


    D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad., 43 (1967), 82-86.doi: 10.3792/pja/1195521686.


    X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, SIAM J. Control Optim., 46 (2007), 1578-1614 (electronic).doi: 10.1137/040610222.


    A. Haraux, Two remarks on hyperbolic dissipative problems, Nonlinear partial differential equations and their applications. Collège de France seminar, Vol. VII (Paris, 1983-1984), Res. Notes in Math., Pitman, Boston, MA, 122 (1985), 161-179.


    L. Hörmander, The Analysis of Linear Partial Differential Operators. III, Springer-Verlag, Berlin, 1994.


    R. Joly and C. Laurent, A note on the semiglobal controllability of the semilinear wave equation, SIAM J. Control Optim., 52 (2014), 439-450.doi: 10.1137/120891174.


    C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3, SIAM J. Math. Anal., 42 (2010), 785-832.doi: 10.1137/090749086.


    C. Laurent, On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold, J. Funct. Anal., 260 (2011), 1304-1368.doi: 10.1016/j.jfa.2010.10.019.


    J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, 1969.


    J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1, Masson, Paris, 1988.


    G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491.doi: 10.1215/S0012-7094-97-08614-2.


    L. Li and X. Zhang, Exact controllability for semilinear wave equations, J. Math. Anal. Appl., 250 (2000), 589-597.doi: 10.1006/jmaa.2000.6998.


    S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004), 921-934.doi: 10.3934/cpaa.2004.3.921.


    X. Zhang, Exact controllability of semilinear evolution systems and its application, J. Optim. Theory Appl., 107 (2000), 415-432.doi: 10.1023/A:1026460831701.


    E. Zuazua, Exact controllability for the semilinear wave equation, J. Math. Pures Appl. (9), 69 (1990), 1-31.


    E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15 (1990), 205-235.doi: 10.1080/03605309908820684.


    E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 109-129.

  • 加载中

Article Metrics

HTML views() PDF downloads(169) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint