-
Previous Article
Optimal control for a phase field system with a possibly singular potential
- MCRF Home
- This Issue
-
Next Article
Quantification of the unique continuation property for the nonstationary Stokes problem
Optimal sampled-data control, and generalizations on time scales
1. | Université de Limoges, Institut de recherche XLIM, Département de Mathématiques et d'Informatique, CNRS UMR 7252, Limoges, France |
2. | Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut Universitaire de France, F-75005, Paris |
References:
[1] |
Results Math., 35 (1999), 3-22.
doi: 10.1007/BF03322019. |
[2] |
Math. Inequal. Appl., 4 (2001), 535-557.
doi: 10.7153/mia-04-48. |
[3] |
Adv. Difference Equ., (2006), Art. ID 38121, 14pp. |
[4] |
Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7. |
[5] |
In Proceedings of the Sixth International Conference on Difference Equations, 239-252, CRC, Boca Raton, FL, 2004. |
[6] |
Math. Comput. Modelling, 43 (2006), 718-726.
doi: 10.1016/j.mcm.2005.08.014. |
[7] |
J. Math. Anal. Appl., 342 (2008), 1220-1226.
doi: 10.1016/j.jmaa.2008.01.018. |
[8] |
Dynam. Systems Appl., 13 (2004), 339-349. |
[9] |
Comput. Math. Appl., 54 (2007), 45-57.
doi: 10.1016/j.camwa.2006.10.032. |
[10] |
Birkhäuser Boston Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0201-1. |
[11] |
Birkhäuser Boston Inc., Boston, MA, 2003.
doi: 10.1007/978-0-8176-8230-9. |
[12] |
John Wiley & Sons, New York-Toronto, Ont., 1978. |
[13] |
Springer Verlag, 2003. |
[14] |
Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37640-2. |
[15] |
J. Difference Equ. Appl., 20 (2014), 526-547.
doi: 10.1080/10236198.2013.862358. |
[16] |
SIAM J. Control Optim., 51 (2013), 3781-3813.
doi: 10.1137/130912219. |
[17] |
J. Math. Anal. Appl., 411 (2014), 543-554.
doi: 10.1016/j.jmaa.2013.10.013. |
[18] |
Springfield, MO, 2007. |
[19] |
Springer, New York, 2011. |
[20] |
Hemisphere Publishing Corp. Washington, D. C., 1975. Optimization, estimation, and control, Revised printing. |
[21] |
Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7. |
[22] |
J. Difference Equ. Appl., 11 (2005), 1013-1028.
doi: 10.1080/10236190500272830. |
[23] |
Math. Comput. Modelling, 43 (2006), 194-207.
doi: 10.1016/j.mcm.2005.09.028. |
[24] |
McGraw-Hill Book Co., New York, 1970. |
[25] |
Applications of Mathematics, 17, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4613-8165-5. |
[26] |
J. Math. Anal. Appl., 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[27] |
John Wiley & Sons, New York, 1964. Google Scholar |
[28] |
In Mathematical control theory and finance, pages 149-159. Springer, Berlin, 2008.
doi: 10.1007/978-3-540-69532-5_9. |
[29] |
Bull. Math. Biol., 64 (2002), 611-620.
doi: 10.1006/bulm.2002.0286. |
[30] |
In Mathematical events of the twentieth century, pages 85-99. Springer, Berlin, 2006.
doi: 10.1007/3-540-29462-7_5. |
[31] |
J. Math. Anal. Appl., 285 (2003), 107-127.
doi: 10.1016/S0022-247X(03)00361-5. |
[32] |
SIAM J. Control, 4 (1966), 90-111.
doi: 10.1137/0304009. |
[33] |
Robert E. Krieger Publishing Co. Inc., Huntington, N.Y., 1980. Corrected reprint of the 1966 original. |
[34] |
PhD thesis, Universität Würzburg, 1988. Google Scholar |
[35] |
J. Math. Anal. Appl., 289 (2004), 143-166.
doi: 10.1016/j.jmaa.2003.09.031. |
[36] |
Comput. Math. Appl., 62 (2011), 3490-3503.
doi: 10.1016/j.camwa.2011.08.065. |
[37] |
Nonlinear Anal., 70 (2009), 3209-3226.
doi: 10.1016/j.na.2008.04.025. |
[38] |
Analysis (Munich), 28 (2008), 1-28.
doi: 10.1524/anly.2008.0900. |
[39] |
IEEE Trans. Automatic Control, AC-11 (1966), 30-35. |
[40] |
Opuscules. Ellipses, Paris, 2008. Google Scholar |
[41] |
SIAM J. Control, 4 (1966), 263-275.
doi: 10.1137/0304023. |
[42] |
Cambridge Studies in Advanced Mathematics, 52, Cambridge University Press, 1997. |
[43] |
John Wiley, New York, 1967. |
[44] |
Nature, 261 (1976), 459-467. Google Scholar |
[45] |
Volumes 330 and 331 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006. |
[46] |
Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962. |
[47] |
Interdisciplinary Applied Mathematics, Vol. 38, Springer, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[48] |
North-Holland Publishing Co., Amsterdam, Volume 24, 1987. |
[49] |
Kluwer Academic Publishers, Boston, MA, second edition, 2000. |
[50] |
Mathématiques Concrètes. Vuibert, Paris, 2005. |
[51] |
J. Optim. Theory Appl., 154 (2012), 713-758.
doi: 10.1007/s10957-012-0050-5. |
show all references
References:
[1] |
Results Math., 35 (1999), 3-22.
doi: 10.1007/BF03322019. |
[2] |
Math. Inequal. Appl., 4 (2001), 535-557.
doi: 10.7153/mia-04-48. |
[3] |
Adv. Difference Equ., (2006), Art. ID 38121, 14pp. |
[4] |
Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7. |
[5] |
In Proceedings of the Sixth International Conference on Difference Equations, 239-252, CRC, Boca Raton, FL, 2004. |
[6] |
Math. Comput. Modelling, 43 (2006), 718-726.
doi: 10.1016/j.mcm.2005.08.014. |
[7] |
J. Math. Anal. Appl., 342 (2008), 1220-1226.
doi: 10.1016/j.jmaa.2008.01.018. |
[8] |
Dynam. Systems Appl., 13 (2004), 339-349. |
[9] |
Comput. Math. Appl., 54 (2007), 45-57.
doi: 10.1016/j.camwa.2006.10.032. |
[10] |
Birkhäuser Boston Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0201-1. |
[11] |
Birkhäuser Boston Inc., Boston, MA, 2003.
doi: 10.1007/978-0-8176-8230-9. |
[12] |
John Wiley & Sons, New York-Toronto, Ont., 1978. |
[13] |
Springer Verlag, 2003. |
[14] |
Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37640-2. |
[15] |
J. Difference Equ. Appl., 20 (2014), 526-547.
doi: 10.1080/10236198.2013.862358. |
[16] |
SIAM J. Control Optim., 51 (2013), 3781-3813.
doi: 10.1137/130912219. |
[17] |
J. Math. Anal. Appl., 411 (2014), 543-554.
doi: 10.1016/j.jmaa.2013.10.013. |
[18] |
Springfield, MO, 2007. |
[19] |
Springer, New York, 2011. |
[20] |
Hemisphere Publishing Corp. Washington, D. C., 1975. Optimization, estimation, and control, Revised printing. |
[21] |
Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7. |
[22] |
J. Difference Equ. Appl., 11 (2005), 1013-1028.
doi: 10.1080/10236190500272830. |
[23] |
Math. Comput. Modelling, 43 (2006), 194-207.
doi: 10.1016/j.mcm.2005.09.028. |
[24] |
McGraw-Hill Book Co., New York, 1970. |
[25] |
Applications of Mathematics, 17, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4613-8165-5. |
[26] |
J. Math. Anal. Appl., 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[27] |
John Wiley & Sons, New York, 1964. Google Scholar |
[28] |
In Mathematical control theory and finance, pages 149-159. Springer, Berlin, 2008.
doi: 10.1007/978-3-540-69532-5_9. |
[29] |
Bull. Math. Biol., 64 (2002), 611-620.
doi: 10.1006/bulm.2002.0286. |
[30] |
In Mathematical events of the twentieth century, pages 85-99. Springer, Berlin, 2006.
doi: 10.1007/3-540-29462-7_5. |
[31] |
J. Math. Anal. Appl., 285 (2003), 107-127.
doi: 10.1016/S0022-247X(03)00361-5. |
[32] |
SIAM J. Control, 4 (1966), 90-111.
doi: 10.1137/0304009. |
[33] |
Robert E. Krieger Publishing Co. Inc., Huntington, N.Y., 1980. Corrected reprint of the 1966 original. |
[34] |
PhD thesis, Universität Würzburg, 1988. Google Scholar |
[35] |
J. Math. Anal. Appl., 289 (2004), 143-166.
doi: 10.1016/j.jmaa.2003.09.031. |
[36] |
Comput. Math. Appl., 62 (2011), 3490-3503.
doi: 10.1016/j.camwa.2011.08.065. |
[37] |
Nonlinear Anal., 70 (2009), 3209-3226.
doi: 10.1016/j.na.2008.04.025. |
[38] |
Analysis (Munich), 28 (2008), 1-28.
doi: 10.1524/anly.2008.0900. |
[39] |
IEEE Trans. Automatic Control, AC-11 (1966), 30-35. |
[40] |
Opuscules. Ellipses, Paris, 2008. Google Scholar |
[41] |
SIAM J. Control, 4 (1966), 263-275.
doi: 10.1137/0304023. |
[42] |
Cambridge Studies in Advanced Mathematics, 52, Cambridge University Press, 1997. |
[43] |
John Wiley, New York, 1967. |
[44] |
Nature, 261 (1976), 459-467. Google Scholar |
[45] |
Volumes 330 and 331 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006. |
[46] |
Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962. |
[47] |
Interdisciplinary Applied Mathematics, Vol. 38, Springer, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[48] |
North-Holland Publishing Co., Amsterdam, Volume 24, 1987. |
[49] |
Kluwer Academic Publishers, Boston, MA, second edition, 2000. |
[50] |
Mathématiques Concrètes. Vuibert, Paris, 2005. |
[51] |
J. Optim. Theory Appl., 154 (2012), 713-758.
doi: 10.1007/s10957-012-0050-5. |
[1] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[2] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[3] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[4] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[5] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[6] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[7] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[8] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[9] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[10] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[11] |
Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078 |
[12] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[13] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[14] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[15] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[16] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[17] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[18] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021022 |
[19] |
Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031 |
[20] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]