June  2016, 6(2): 335-362. doi: 10.3934/mcrf.2016006

Optimal control of a two-phase flow model with state constraints

1. 

Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States

Received  February 2015 Revised  April 2015 Published  April 2016

We investigate in this article the Pontryagin's maximum principle for a class of control problems associated with a two-phase flow model in a two dimensional bounded domain. The model consists of the Navier-Stokes equations for the velocity $v, $ coupled with a convective Allen-Cahn model for the order (phase) parameter $\phi. $ The optimal problems involve a state constraint similar to that considered in [18]. We derive the Pontryagin's maximum principle for the control problems assuming that a solution exists. Let us note that the coupling between the Navier-Stokes and the Allen-Cahn systems makes the analysis of the control problem more involved. In particular, the associated adjoint systems have less regularity than the one derived in [18].
Citation: Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006
References:
[1]

H. Abels, On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57 (2008), 659-698. doi: 10.1512/iumj.2008.57.3391.

[2]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506. doi: 10.1007/s00205-008-0160-2.

[3]

F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynam., 1 (1990), 303-325. doi: 10.1007/BF00271794.

[4]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow, Pysica D (Applied Physics), 32 (1999), 1119-1123. doi: 10.1088/0022-3727/32/10/307.

[5]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827.

[6]

C. Cao and C. G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, 25 (2012), 3211-3234. doi: 10.1088/0951-7715/25/11/3211.

[7]

E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010), 1129-1160. doi: 10.1142/S0218202510004544.

[8]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436. doi: 10.1016/j.anihpc.2009.11.013.

[9]

C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010), 1-39. doi: 10.3934/dcds.2010.28.1.

[10]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678. doi: 10.1007/s11401-010-0603-6.

[11]

M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluid and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. doi: 10.1142/S0218202596000341.

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977), 435-479.

[13]

S. Li, Optimal controls of Boussinesq equations with state constraints, Nonlinear Anal., 60 (2005), 1485-1508. doi: 10.1016/j.na.2004.11.010.

[14]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.

[15]

J. L. Lions, Optimal Control of Systems governed by Partial Differential Equations, Springer-Verlag, New York, 1971.

[16]

A. Onuki, Phase transition of fluids in shear flow, Phase Transition Dynamics, 11 (2009), 641-709. doi: 10.1017/CBO9780511534874.012.

[17]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1997. doi: 10.1007/978-1-4612-0645-3.

[18]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints, SIAM J. Control Optim., 41 (2002), 583-606. doi: 10.1137/S0363012901385769.

[19]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint, Nonlinear Anal., 51 (2002), 509-536. doi: 10.1016/S0362-546X(01)00843-4.

[20]

G. Wang, Pontryagin's maximum principle for optimal control of the stationary Navier-Stokes equations, Nonlinear Anal., 52 (2003), 1853-1866. doi: 10.1016/S0362-546X(02)00161-X.

[21]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Anal., 52 (2003), 1911-1931. doi: 10.1016/S0362-546X(02)00282-1.

show all references

References:
[1]

H. Abels, On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57 (2008), 659-698. doi: 10.1512/iumj.2008.57.3391.

[2]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506. doi: 10.1007/s00205-008-0160-2.

[3]

F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynam., 1 (1990), 303-325. doi: 10.1007/BF00271794.

[4]

T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow, Pysica D (Applied Physics), 32 (1999), 1119-1123. doi: 10.1088/0022-3727/32/10/307.

[5]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827.

[6]

C. Cao and C. G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, 25 (2012), 3211-3234. doi: 10.1088/0951-7715/25/11/3211.

[7]

E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010), 1129-1160. doi: 10.1142/S0218202510004544.

[8]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436. doi: 10.1016/j.anihpc.2009.11.013.

[9]

C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010), 1-39. doi: 10.3934/dcds.2010.28.1.

[10]

C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678. doi: 10.1007/s11401-010-0603-6.

[11]

M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluid and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. doi: 10.1142/S0218202596000341.

[12]

P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977), 435-479.

[13]

S. Li, Optimal controls of Boussinesq equations with state constraints, Nonlinear Anal., 60 (2005), 1485-1508. doi: 10.1016/j.na.2004.11.010.

[14]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.

[15]

J. L. Lions, Optimal Control of Systems governed by Partial Differential Equations, Springer-Verlag, New York, 1971.

[16]

A. Onuki, Phase transition of fluids in shear flow, Phase Transition Dynamics, 11 (2009), 641-709. doi: 10.1017/CBO9780511534874.012.

[17]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1997. doi: 10.1007/978-1-4612-0645-3.

[18]

G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints, SIAM J. Control Optim., 41 (2002), 583-606. doi: 10.1137/S0363012901385769.

[19]

G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint, Nonlinear Anal., 51 (2002), 509-536. doi: 10.1016/S0362-546X(01)00843-4.

[20]

G. Wang, Pontryagin's maximum principle for optimal control of the stationary Navier-Stokes equations, Nonlinear Anal., 52 (2003), 1853-1866. doi: 10.1016/S0362-546X(02)00161-X.

[21]

G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Anal., 52 (2003), 1911-1931. doi: 10.1016/S0362-546X(02)00282-1.

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110

[2]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[3]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[4]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[5]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[6]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[7]

T. Tachim Medjo. On weak martingale solutions to a stochastic Allen-Cahn-Navier-Stokes model with inertial effects. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5447-5485. doi: 10.3934/dcdsb.2021282

[8]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[9]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[10]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[11]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[12]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[13]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[14]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[15]

Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151

[16]

Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117

[17]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[18]

Eduardo Casas, Fredi Tröltzsch. State-constrained semilinear elliptic optimization problems with unrestricted sparse controls. Mathematical Control and Related Fields, 2020, 10 (3) : 527-546. doi: 10.3934/mcrf.2020009

[19]

Lars Grüne, Hasnaa Zidani. Zubov's equation for state-constrained perturbed nonlinear systems. Mathematical Control and Related Fields, 2015, 5 (1) : 55-71. doi: 10.3934/mcrf.2015.5.55

[20]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]