- Previous Article
- MCRF Home
- This Issue
-
Next Article
An optimal control approach to ciliary locomotion
Optimal control of a two-phase flow model with state constraints
1. | Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States |
References:
[1] |
H. Abels, On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57 (2008), 659-698.
doi: 10.1512/iumj.2008.57.3391. |
[2] |
H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.
doi: 10.1007/s00205-008-0160-2. |
[3] |
F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynam., 1 (1990), 303-325.
doi: 10.1007/BF00271794. |
[4] |
T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow, Pysica D (Applied Physics), 32 (1999), 1119-1123.
doi: 10.1088/0022-3727/32/10/307. |
[5] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827. |
[6] |
C. Cao and C. G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, 25 (2012), 3211-3234.
doi: 10.1088/0951-7715/25/11/3211. |
[7] |
E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010), 1129-1160.
doi: 10.1142/S0218202510004544. |
[8] |
C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.
doi: 10.1016/j.anihpc.2009.11.013. |
[9] |
C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010), 1-39.
doi: 10.3934/dcds.2010.28.1. |
[10] |
C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678.
doi: 10.1007/s11401-010-0603-6. |
[11] |
M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluid and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831.
doi: 10.1142/S0218202596000341. |
[12] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977), 435-479. |
[13] |
S. Li, Optimal controls of Boussinesq equations with state constraints, Nonlinear Anal., 60 (2005), 1485-1508.
doi: 10.1016/j.na.2004.11.010. |
[14] |
X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[15] |
J. L. Lions, Optimal Control of Systems governed by Partial Differential Equations, Springer-Verlag, New York, 1971. |
[16] |
A. Onuki, Phase transition of fluids in shear flow, Phase Transition Dynamics, 11 (2009), 641-709.
doi: 10.1017/CBO9780511534874.012. |
[17] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[18] |
G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints, SIAM J. Control Optim., 41 (2002), 583-606.
doi: 10.1137/S0363012901385769. |
[19] |
G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint, Nonlinear Anal., 51 (2002), 509-536.
doi: 10.1016/S0362-546X(01)00843-4. |
[20] |
G. Wang, Pontryagin's maximum principle for optimal control of the stationary Navier-Stokes equations, Nonlinear Anal., 52 (2003), 1853-1866.
doi: 10.1016/S0362-546X(02)00161-X. |
[21] |
G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Anal., 52 (2003), 1911-1931.
doi: 10.1016/S0362-546X(02)00282-1. |
show all references
References:
[1] |
H. Abels, On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57 (2008), 659-698.
doi: 10.1512/iumj.2008.57.3391. |
[2] |
H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.
doi: 10.1007/s00205-008-0160-2. |
[3] |
F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynam., 1 (1990), 303-325.
doi: 10.1007/BF00271794. |
[4] |
T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow, Pysica D (Applied Physics), 32 (1999), 1119-1123.
doi: 10.1088/0022-3727/32/10/307. |
[5] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827. |
[6] |
C. Cao and C. G. Gal, Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, 25 (2012), 3211-3234.
doi: 10.1088/0951-7715/25/11/3211. |
[7] |
E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010), 1129-1160.
doi: 10.1142/S0218202510004544. |
[8] |
C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.
doi: 10.1016/j.anihpc.2009.11.013. |
[9] |
C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010), 1-39.
doi: 10.3934/dcds.2010.28.1. |
[10] |
C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678.
doi: 10.1007/s11401-010-0603-6. |
[11] |
M. E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluid and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831.
doi: 10.1142/S0218202596000341. |
[12] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977), 435-479. |
[13] |
S. Li, Optimal controls of Boussinesq equations with state constraints, Nonlinear Anal., 60 (2005), 1485-1508.
doi: 10.1016/j.na.2004.11.010. |
[14] |
X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[15] |
J. L. Lions, Optimal Control of Systems governed by Partial Differential Equations, Springer-Verlag, New York, 1971. |
[16] |
A. Onuki, Phase transition of fluids in shear flow, Phase Transition Dynamics, 11 (2009), 641-709.
doi: 10.1017/CBO9780511534874.012. |
[17] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[18] |
G. Wang, Optimal controls of 3-dimensional Navier-Stokes equations with state constraints, SIAM J. Control Optim., 41 (2002), 583-606.
doi: 10.1137/S0363012901385769. |
[19] |
G. Wang, Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint, Nonlinear Anal., 51 (2002), 509-536.
doi: 10.1016/S0362-546X(01)00843-4. |
[20] |
G. Wang, Pontryagin's maximum principle for optimal control of the stationary Navier-Stokes equations, Nonlinear Anal., 52 (2003), 1853-1866.
doi: 10.1016/S0362-546X(02)00161-X. |
[21] |
G. Wang and L. Wang, Maximum principle of state-constrained optimal control governed by fluid dynamic systems, Nonlinear Anal., 52 (2003), 1911-1931.
doi: 10.1016/S0362-546X(02)00282-1. |
[1] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110 |
[2] |
Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651 |
[3] |
Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137 |
[4] |
Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009 |
[5] |
T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665 |
[6] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[7] |
T. Tachim Medjo. On weak martingale solutions to a stochastic Allen-Cahn-Navier-Stokes model with inertial effects. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021282 |
[8] |
Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 |
[9] |
K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591 |
[10] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[11] |
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 |
[12] |
Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 |
[13] |
Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016 |
[14] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[15] |
Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151 |
[16] |
Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117 |
[17] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[18] |
Eduardo Casas, Fredi Tröltzsch. State-constrained semilinear elliptic optimization problems with unrestricted sparse controls. Mathematical Control and Related Fields, 2020, 10 (3) : 527-546. doi: 10.3934/mcrf.2020009 |
[19] |
Lars Grüne, Hasnaa Zidani. Zubov's equation for state-constrained perturbed nonlinear systems. Mathematical Control and Related Fields, 2015, 5 (1) : 55-71. doi: 10.3934/mcrf.2015.5.55 |
[20] |
Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]