-
Previous Article
Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary
- MCRF Home
- This Issue
-
Next Article
A sparse Markov chain approximation of LQ-type stochastic control problems
On the convergence of the Sakawa-Shindo algorithm in stochastic control
1. | INRIA-Saclay and Centre de Mathématiques Appliquées, Ecole Polytechnique and Laboratoire de Finance des Marchés d'Énergie, 91128 Palaiseau, France |
2. | CIFASIS - Centro Internacional Franco Argentino, de Ciencias de la Información y de Sistemas, CONICET - UNR - AMU, S2000EZP Rosario, Argentina |
3. | Institut de recherche XLIM-DMI, UMR-CNRS 7252, Faculté des sciences et techniques, Université de Limoges, 87060 Limoges, France |
References:
[1] |
J. Backhoff and F. J. Silva, Sensitivity results in stochastic optimal control: A Lagrangian perspective,, ESAIM: COCV, ().
doi: 10.1051/cocv/2015039. |
[2] |
Lectures notes in Maths. Vol. 972, Springer-Verlag, Berlin, 1982. |
[3] |
J. Franklin Inst., 315 (1983), 387-406,
doi: 10.1016/0016-0032(83)90059-5. |
[4] |
SIAM J. Control Optimization, 14 (1976), 419-444.
doi: 10.1137/0314028. |
[5] |
J. Math. Anal. Appl., 44 (1973), 384-404.
doi: 10.1016/0022-247X(73)90066-8. |
[6] |
SIAM Rev., 20 (1978), 62-78.
doi: 10.1137/1020004. |
[7] |
SIAM J. Control Optim., 24 (1986), 579-588.
doi: 10.1137/0324034. |
[8] |
Appl. Math. Optim., 65 (2012), 403-439.
doi: 10.1007/s00245-012-9162-4. |
[9] |
SIAM J. Control Optim., 33 (1995), 590-624.
doi: 10.1137/S0363012992240722. |
[10] |
Bull. Amer. Math. Soc., 70 (1964), 709-710.
doi: 10.1090/S0002-9904-1964-11178-2. |
[11] |
SIAM Rev., 23 (1981), 292-307.
doi: 10.1137/1023062. |
[12] |
SIAM J. Control, 10 (1972), 550-565.
doi: 10.1137/0310041. |
[13] |
J. Math. Anal. Appl., 11 (1965), 78-92.
doi: 10.1016/0022-247X(65)90070-3. |
[14] |
J. Math. Anal. Appl., 8 (1964), 287-302.
doi: 10.1016/0022-247X(64)90070-8. |
[15] |
Stochastic analysis and applications, 14 (1996), 513-533.
doi: 10.1080/07362999608809455. |
[16] |
Pure Appl. Math. Q., 3 (2007), 539-567.
doi: 10.4310/PAMQ.2007.v3.n2.a7. |
[17] |
SIAM J. Control Optim., 28 (1990), 966-979.
doi: 10.1137/0328054. |
[18] |
Gordon & Breach Science Publishers, New York, 1986, Reprint of the 1962 English translation. |
[19] |
IEEE Trans. Automat. Control, 25 (1980), 1149-1153.
doi: 10.1109/TAC.1980.1102517. |
[20] |
Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
show all references
References:
[1] |
J. Backhoff and F. J. Silva, Sensitivity results in stochastic optimal control: A Lagrangian perspective,, ESAIM: COCV, ().
doi: 10.1051/cocv/2015039. |
[2] |
Lectures notes in Maths. Vol. 972, Springer-Verlag, Berlin, 1982. |
[3] |
J. Franklin Inst., 315 (1983), 387-406,
doi: 10.1016/0016-0032(83)90059-5. |
[4] |
SIAM J. Control Optimization, 14 (1976), 419-444.
doi: 10.1137/0314028. |
[5] |
J. Math. Anal. Appl., 44 (1973), 384-404.
doi: 10.1016/0022-247X(73)90066-8. |
[6] |
SIAM Rev., 20 (1978), 62-78.
doi: 10.1137/1020004. |
[7] |
SIAM J. Control Optim., 24 (1986), 579-588.
doi: 10.1137/0324034. |
[8] |
Appl. Math. Optim., 65 (2012), 403-439.
doi: 10.1007/s00245-012-9162-4. |
[9] |
SIAM J. Control Optim., 33 (1995), 590-624.
doi: 10.1137/S0363012992240722. |
[10] |
Bull. Amer. Math. Soc., 70 (1964), 709-710.
doi: 10.1090/S0002-9904-1964-11178-2. |
[11] |
SIAM Rev., 23 (1981), 292-307.
doi: 10.1137/1023062. |
[12] |
SIAM J. Control, 10 (1972), 550-565.
doi: 10.1137/0310041. |
[13] |
J. Math. Anal. Appl., 11 (1965), 78-92.
doi: 10.1016/0022-247X(65)90070-3. |
[14] |
J. Math. Anal. Appl., 8 (1964), 287-302.
doi: 10.1016/0022-247X(64)90070-8. |
[15] |
Stochastic analysis and applications, 14 (1996), 513-533.
doi: 10.1080/07362999608809455. |
[16] |
Pure Appl. Math. Q., 3 (2007), 539-567.
doi: 10.4310/PAMQ.2007.v3.n2.a7. |
[17] |
SIAM J. Control Optim., 28 (1990), 966-979.
doi: 10.1137/0328054. |
[18] |
Gordon & Breach Science Publishers, New York, 1986, Reprint of the 1962 English translation. |
[19] |
IEEE Trans. Automat. Control, 25 (1980), 1149-1153.
doi: 10.1109/TAC.1980.1102517. |
[20] |
Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
[1] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[2] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[3] |
Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069 |
[4] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[5] |
Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021078 |
[6] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[7] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[8] |
Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021025 |
[9] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[10] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021072 |
[11] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[12] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[13] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021039 |
[14] |
Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021039 |
[15] |
Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035 |
[16] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[17] |
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044 |
[18] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[19] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[20] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]