-
Previous Article
Asymptotic stability of wave equations coupled by velocities
- MCRF Home
- This Issue
-
Next Article
On the convergence of the Sakawa-Shindo algorithm in stochastic control
Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary
1. | Institut de Mathématiques de Marseille, CNRS, UMR 7373, École Centrale, Aix-Marseille Université, 13453 Marseille, France |
2. | Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences, School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China |
3. | Aix-Marseille Université de Toulon, CNRS, CPT, 13288 Marseille, France |
References:
[1] |
M. Bellassoued, Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation, Inverse Problems, 20 (2004), 1033-1052.
doi: 10.1088/0266-5611/20/4/003. |
[2] |
M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients, Applicable Analysis, 83 (2004), 983-1014.
doi: 10.1080/0003681042000221678. |
[3] |
M. Bellassoued, M. Cristofol and E. Soccorsi, Inverse boundary value problem for the dynamical heterogeneous Maxwell's system, Inverse Problems, 28 (2012), 095009, 18pp.
doi: 10.1088/0266-5611/28/9/095009. |
[4] |
M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem, J. Diff. Equat., 247 (2009), 465-494.
doi: 10.1016/j.jde.2009.03.024. |
[5] |
M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data, Applicable Analysis, 87 (2008), 1105-1119.
doi: 10.1080/00036810802369231. |
[6] |
M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation, J. Math. Pures Appl., 85 (2006), 193-224.
doi: 10.1016/j.matpur.2005.02.004. |
[7] |
M. Bellassoued and M. Yamamoto, Determination of a coefficient in the wave equation with a single measurement, Applicable Analysis, 87 (2008), 901-920.
doi: 10.1080/00036810802369249. |
[8] |
A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimentional inverse problems, Soviet Math. Dokl., 24 (1981), 244-247. |
[9] |
L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip, C. R. Math. Acad. Sci. Paris, 346 (2008), 635-640.
doi: 10.1016/j.crma.2008.04.004. |
[10] |
L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[11] |
O. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems, 17 (2001), 717-728.
doi: 10.1088/0266-5611/17/4/310. |
[12] |
O. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with single measurement, Inverse Problems, 19 (2003), 157-171.
doi: 10.1088/0266-5611/19/1/309. |
[13] |
V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse Problems, 8 (1992), 193-206.
doi: 10.1088/0266-5611/8/2/003. |
[14] |
V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 2006. |
[15] |
Y. Kian, Q. S. Phan and E. Soccorsi, Carleman estimate for infinite cylindrical quantum domains and application to inverse problems, Inverse Problems, 30 (2014), 055016, 16pp.
doi: 10.1088/0266-5611/30/5/055016. |
[16] |
Y. Kian, Q. S. Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains, Journal of Mathematical Analysis and Applications, 426 (2015), 194-210.
doi: 10.1016/j.jmaa.2015.01.028. |
[17] |
M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time dependent data, Inverse Problems, 7 (1991), 577-596.
doi: 10.1088/0266-5611/7/4/007. |
[18] |
M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an accoustic equation, Applicable Analysis, 85 (2006), 515-538.
doi: 10.1080/00036810500474788. |
[19] |
J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, vol. 1, Dunod, 1968. |
[20] |
P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154 (1998), 330-358.
doi: 10.1006/jfan.1997.3188. |
[21] |
M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98.
doi: 10.1016/S0021-7824(99)80010-5. |
show all references
References:
[1] |
M. Bellassoued, Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation, Inverse Problems, 20 (2004), 1033-1052.
doi: 10.1088/0266-5611/20/4/003. |
[2] |
M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients, Applicable Analysis, 83 (2004), 983-1014.
doi: 10.1080/0003681042000221678. |
[3] |
M. Bellassoued, M. Cristofol and E. Soccorsi, Inverse boundary value problem for the dynamical heterogeneous Maxwell's system, Inverse Problems, 28 (2012), 095009, 18pp.
doi: 10.1088/0266-5611/28/9/095009. |
[4] |
M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem, J. Diff. Equat., 247 (2009), 465-494.
doi: 10.1016/j.jde.2009.03.024. |
[5] |
M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data, Applicable Analysis, 87 (2008), 1105-1119.
doi: 10.1080/00036810802369231. |
[6] |
M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation, J. Math. Pures Appl., 85 (2006), 193-224.
doi: 10.1016/j.matpur.2005.02.004. |
[7] |
M. Bellassoued and M. Yamamoto, Determination of a coefficient in the wave equation with a single measurement, Applicable Analysis, 87 (2008), 901-920.
doi: 10.1080/00036810802369249. |
[8] |
A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimentional inverse problems, Soviet Math. Dokl., 24 (1981), 244-247. |
[9] |
L. Cardoulis, M. Cristofol and P. Gaitan, Inverse problem for the Schrödinger operator in an unbounded strip, C. R. Math. Acad. Sci. Paris, 346 (2008), 635-640.
doi: 10.1016/j.crma.2008.04.004. |
[10] |
L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[11] |
O. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems, 17 (2001), 717-728.
doi: 10.1088/0266-5611/17/4/310. |
[12] |
O. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with single measurement, Inverse Problems, 19 (2003), 157-171.
doi: 10.1088/0266-5611/19/1/309. |
[13] |
V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse Problems, 8 (1992), 193-206.
doi: 10.1088/0266-5611/8/2/003. |
[14] |
V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 2006. |
[15] |
Y. Kian, Q. S. Phan and E. Soccorsi, Carleman estimate for infinite cylindrical quantum domains and application to inverse problems, Inverse Problems, 30 (2014), 055016, 16pp.
doi: 10.1088/0266-5611/30/5/055016. |
[16] |
Y. Kian, Q. S. Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains, Journal of Mathematical Analysis and Applications, 426 (2015), 194-210.
doi: 10.1016/j.jmaa.2015.01.028. |
[17] |
M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time dependent data, Inverse Problems, 7 (1991), 577-596.
doi: 10.1088/0266-5611/7/4/007. |
[18] |
M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an accoustic equation, Applicable Analysis, 85 (2006), 515-538.
doi: 10.1080/00036810500474788. |
[19] |
J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, vol. 1, Dunod, 1968. |
[20] |
P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154 (1998), 330-358.
doi: 10.1006/jfan.1997.3188. |
[21] |
M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98.
doi: 10.1016/S0021-7824(99)80010-5. |
[1] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[2] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[3] |
Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088 |
[4] |
Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160 |
[5] |
Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2022, 11 (5) : 1681-1699. doi: 10.3934/eect.2021060 |
[6] |
Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, 2022, 16 (5) : 1163-1178. doi: 10.3934/ipi.2022016 |
[7] |
Alexey Smirnov, Michael Klibanov, Loc Nguyen. Convexification for a 1D hyperbolic coefficient inverse problem with single measurement data. Inverse Problems and Imaging, 2020, 14 (5) : 913-938. doi: 10.3934/ipi.2020042 |
[8] |
Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057 |
[9] |
Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133 |
[10] |
Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95 |
[11] |
Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems and Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397 |
[12] |
Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems and Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019 |
[13] |
Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 |
[14] |
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 |
[15] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117 |
[16] |
Kim Knudsen, Matti Lassas, Jennifer L. Mueller, Samuli Siltanen. Regularized D-bar method for the inverse conductivity problem. Inverse Problems and Imaging, 2009, 3 (4) : 599-624. doi: 10.3934/ipi.2009.3.599 |
[17] |
Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems and Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49 |
[18] |
Jie Chen, Maarten de Hoop. The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter. Inverse Problems and Imaging, 2016, 10 (3) : 641-658. doi: 10.3934/ipi.2016015 |
[19] |
Yanpeng Jin, Ying Fu. Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2775-2797. doi: 10.3934/cpaa.2022072 |
[20] |
Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]