• Previous Article
    Control and stabilization of 2 × 2 hyperbolic systems on graphs
  • MCRF Home
  • This Issue
  • Next Article
    Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory
March  2017, 7(1): 41-52. doi: 10.3934/mcrf.2017003

A discrete hierarchy of double bracket equations and a class of negative power series

1. 

Instituto de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 67 No. 53 -108, Medellin, Colombia

2. 

Departamento de Ciencias Básicas, Universidad del Sinú, Cra 1w No. 38-153, Barrio Juan XXⅢ, Montería, Colombia

* Corresponding author:nancy.lopez@udea.edu.co

Received  October 2015 Revised  September 2016 Published  December 2016

Fund Project: The first author is supported by UdeA under SUI Project (Acta No.701,2015-03-11).

The space of negative power series of $z$ on $\{z\in \mathbb{C}:|z|>1\}$ can also be parametrized by means of a system of double bracket differential equations. To show this parametrization we introduce a group factorization for equation system. This work, for the case of a double bracket system, is a continuation of an earlier study discussed in The discrete KP hierarchy and the negative power series on the complex plane. Comp. and App. Math. 32 (2013), 483-493 for the case of one bracket system.

Citation: Nancy López Reyes, Luis E. Benítez Babilonia. A discrete hierarchy of double bracket equations and a class of negative power series. Mathematical Control and Related Fields, 2017, 7 (1) : 41-52. doi: 10.3934/mcrf.2017003
References:
[1]

L. Benitez-BabiloniaR. Felipe and N. López Reyes, Algebraic analysis of a discrete hierarchy of double bracket equations, Diff. Equ. and Dyn. Syst., 17 (2009), 77-90.  doi: 10.1007/s12591-009-0006-x.

[2]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems: Foundations and Applications, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4581-6.

[3]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995. doi: 978-1-4612-8702-5.

[4]

R. Felipe, Algebraic aspects of Brockett type equations, Physica D, 132 (1999), 287-297.  doi: 10.1016/S0167-2789(99)00025-1.

[5]

R. Felipe and F. Ongay, Algebraic aspects of the discrete KP hierarchy, Linear Alg. and its Appl., 338 (2001), 1-17.  doi: 10.1016/S0024-3795(01)00365-2.

[6]

R. Felipe and N. López Reyes, The finite discrete KP hierarchy and the rational functions Disc. Dyna. in Natu. and Soci., 2008 (2008), Article ID 792632, 10pp. doi: 10.1155/2008/792632.

[7]

R. Felipe and N. López Reyes, Integrability of a double bracket system, Rev. Integración, 31 (2013), 15-23. 

[8]

B. Jacob and H. J. Zwart, Properties of the realization of inner functions, Math. Cont. Sign. Syst., 15 (2002), 356-379.  doi: 10.1016/S0167-6911(01)00113-X.

[9]

N. López ReyesR. Felipe and T. Castro Polo, The discrete KP hierarchy and the negative power series on the complex plane, Comp. and Appl. Math., 32 (2013), 483-493.  doi: 10.1007/s40314-013-0031-9.

[10]

Y. Nakamura, Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal., 22 (1991), 1744-1754.  doi: 10.1137/0522108.

[11]

T.-Y. Tam, Gradiente flows and double bracket equations, Diff. Geom. Appl., 20 (2004), 209-224.  doi: 10.1016/j.difgeo.2003.10.008.

[12]

H. J. Zwart, Transfer functions for infinite-dimensional systems, Syst. Cont. Lett., 52 (2004), 247-255.  doi: 10.1016/j.sysconle.2004.02.002.

show all references

References:
[1]

L. Benitez-BabiloniaR. Felipe and N. López Reyes, Algebraic analysis of a discrete hierarchy of double bracket equations, Diff. Equ. and Dyn. Syst., 17 (2009), 77-90.  doi: 10.1007/s12591-009-0006-x.

[2]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems: Foundations and Applications, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4581-6.

[3]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995. doi: 978-1-4612-8702-5.

[4]

R. Felipe, Algebraic aspects of Brockett type equations, Physica D, 132 (1999), 287-297.  doi: 10.1016/S0167-2789(99)00025-1.

[5]

R. Felipe and F. Ongay, Algebraic aspects of the discrete KP hierarchy, Linear Alg. and its Appl., 338 (2001), 1-17.  doi: 10.1016/S0024-3795(01)00365-2.

[6]

R. Felipe and N. López Reyes, The finite discrete KP hierarchy and the rational functions Disc. Dyna. in Natu. and Soci., 2008 (2008), Article ID 792632, 10pp. doi: 10.1155/2008/792632.

[7]

R. Felipe and N. López Reyes, Integrability of a double bracket system, Rev. Integración, 31 (2013), 15-23. 

[8]

B. Jacob and H. J. Zwart, Properties of the realization of inner functions, Math. Cont. Sign. Syst., 15 (2002), 356-379.  doi: 10.1016/S0167-6911(01)00113-X.

[9]

N. López ReyesR. Felipe and T. Castro Polo, The discrete KP hierarchy and the negative power series on the complex plane, Comp. and Appl. Math., 32 (2013), 483-493.  doi: 10.1007/s40314-013-0031-9.

[10]

Y. Nakamura, Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal., 22 (1991), 1744-1754.  doi: 10.1137/0522108.

[11]

T.-Y. Tam, Gradiente flows and double bracket equations, Diff. Geom. Appl., 20 (2004), 209-224.  doi: 10.1016/j.difgeo.2003.10.008.

[12]

H. J. Zwart, Transfer functions for infinite-dimensional systems, Syst. Cont. Lett., 52 (2004), 247-255.  doi: 10.1016/j.sysconle.2004.02.002.

[1]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[2]

Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021279

[3]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[4]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[5]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

[6]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial and Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[7]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control and Related Fields, 2022, 12 (1) : 17-47. doi: 10.3934/mcrf.2021001

[8]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[9]

Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006

[10]

Renhai Wang, Bixiang Wang. Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2461-2493. doi: 10.3934/dcdsb.2020019

[11]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[12]

Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241

[13]

Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531

[14]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655

[15]

Jianing Chen, Bixiang Wang. Random attractors of supercritical wave equations driven by infinite-dimensional additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022093

[16]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[17]

Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems and Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567

[18]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[19]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control and Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[20]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 821-836. doi: 10.3934/dcdsb.2021066

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (100)
  • HTML views (47)
  • Cited by (1)

[Back to Top]