-
Previous Article
Control and stabilization of 2 × 2 hyperbolic systems on graphs
- MCRF Home
- This Issue
-
Next Article
Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory
A discrete hierarchy of double bracket equations and a class of negative power series
1. | Instituto de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 67 No. 53 -108, Medellin, Colombia |
2. | Departamento de Ciencias Básicas, Universidad del Sinú, Cra 1w No. 38-153, Barrio Juan XXⅢ, Montería, Colombia |
The space of negative power series of $z$ on $\{z\in \mathbb{C}:|z|>1\}$ can also be parametrized by means of a system of double bracket differential equations. To show this parametrization we introduce a group factorization for equation system. This work, for the case of a double bracket system, is a continuation of an earlier study discussed in The discrete KP hierarchy and the negative power series on the complex plane. Comp. and App. Math. 32 (2013), 483-493 for the case of one bracket system.
References:
[1] |
L. Benitez-Babilonia, R. Felipe and N. López Reyes,
Algebraic analysis of a discrete hierarchy of double bracket equations, Diff. Equ. and Dyn. Syst., 17 (2009), 77-90.
doi: 10.1007/s12591-009-0006-x. |
[2] |
A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems: Foundations and Applications, Birkhäuser, Boston, 2007.
doi: 10.1007/978-0-8176-4581-6. |
[3] |
R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995.
doi: 978-1-4612-8702-5. |
[4] |
R. Felipe,
Algebraic aspects of Brockett type equations, Physica D, 132 (1999), 287-297.
doi: 10.1016/S0167-2789(99)00025-1. |
[5] |
R. Felipe and F. Ongay,
Algebraic aspects of the discrete KP hierarchy, Linear Alg. and its Appl., 338 (2001), 1-17.
doi: 10.1016/S0024-3795(01)00365-2. |
[6] |
R. Felipe and N. López Reyes, The finite discrete KP hierarchy and the rational functions Disc. Dyna. in Natu. and Soci., 2008 (2008), Article ID 792632, 10pp.
doi: 10.1155/2008/792632. |
[7] |
R. Felipe and N. López Reyes,
Integrability of a double bracket system, Rev. Integración, 31 (2013), 15-23.
|
[8] |
B. Jacob and H. J. Zwart,
Properties of the realization of inner functions, Math. Cont. Sign. Syst., 15 (2002), 356-379.
doi: 10.1016/S0167-6911(01)00113-X. |
[9] |
N. López Reyes, R. Felipe and T. Castro Polo,
The discrete KP hierarchy and the negative power series on the complex plane, Comp. and Appl. Math., 32 (2013), 483-493.
doi: 10.1007/s40314-013-0031-9. |
[10] |
Y. Nakamura,
Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal., 22 (1991), 1744-1754.
doi: 10.1137/0522108. |
[11] |
T.-Y. Tam,
Gradiente flows and double bracket equations, Diff. Geom. Appl., 20 (2004), 209-224.
doi: 10.1016/j.difgeo.2003.10.008. |
[12] |
H. J. Zwart,
Transfer functions for infinite-dimensional systems, Syst. Cont. Lett., 52 (2004), 247-255.
doi: 10.1016/j.sysconle.2004.02.002. |
show all references
References:
[1] |
L. Benitez-Babilonia, R. Felipe and N. López Reyes,
Algebraic analysis of a discrete hierarchy of double bracket equations, Diff. Equ. and Dyn. Syst., 17 (2009), 77-90.
doi: 10.1007/s12591-009-0006-x. |
[2] |
A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems: Foundations and Applications, Birkhäuser, Boston, 2007.
doi: 10.1007/978-0-8176-4581-6. |
[3] |
R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995.
doi: 978-1-4612-8702-5. |
[4] |
R. Felipe,
Algebraic aspects of Brockett type equations, Physica D, 132 (1999), 287-297.
doi: 10.1016/S0167-2789(99)00025-1. |
[5] |
R. Felipe and F. Ongay,
Algebraic aspects of the discrete KP hierarchy, Linear Alg. and its Appl., 338 (2001), 1-17.
doi: 10.1016/S0024-3795(01)00365-2. |
[6] |
R. Felipe and N. López Reyes, The finite discrete KP hierarchy and the rational functions Disc. Dyna. in Natu. and Soci., 2008 (2008), Article ID 792632, 10pp.
doi: 10.1155/2008/792632. |
[7] |
R. Felipe and N. López Reyes,
Integrability of a double bracket system, Rev. Integración, 31 (2013), 15-23.
|
[8] |
B. Jacob and H. J. Zwart,
Properties of the realization of inner functions, Math. Cont. Sign. Syst., 15 (2002), 356-379.
doi: 10.1016/S0167-6911(01)00113-X. |
[9] |
N. López Reyes, R. Felipe and T. Castro Polo,
The discrete KP hierarchy and the negative power series on the complex plane, Comp. and Appl. Math., 32 (2013), 483-493.
doi: 10.1007/s40314-013-0031-9. |
[10] |
Y. Nakamura,
Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal., 22 (1991), 1744-1754.
doi: 10.1137/0522108. |
[11] |
T.-Y. Tam,
Gradiente flows and double bracket equations, Diff. Geom. Appl., 20 (2004), 209-224.
doi: 10.1016/j.difgeo.2003.10.008. |
[12] |
H. J. Zwart,
Transfer functions for infinite-dimensional systems, Syst. Cont. Lett., 52 (2004), 247-255.
doi: 10.1016/j.sysconle.2004.02.002. |
[1] |
Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 |
[2] |
Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021279 |
[3] |
Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207 |
[4] |
Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407 |
[5] |
Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379 |
[6] |
Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial and Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15 |
[7] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control and Related Fields, 2022, 12 (1) : 17-47. doi: 10.3934/mcrf.2021001 |
[8] |
Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012 |
[9] |
Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006 |
[10] |
Renhai Wang, Bixiang Wang. Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2461-2493. doi: 10.3934/dcdsb.2020019 |
[11] |
Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619 |
[12] |
Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241 |
[13] |
Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531 |
[14] |
Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655 |
[15] |
Jianing Chen, Bixiang Wang. Random attractors of supercritical wave equations driven by infinite-dimensional additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022093 |
[16] |
Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517 |
[17] |
Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems and Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567 |
[18] |
Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149 |
[19] |
Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control and Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83 |
[20] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 821-836. doi: 10.3934/dcdsb.2021066 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]