June  2017, 7(2): 235-257. doi: 10.3934/mcrf.2017008

Optimal control of a multi-level dynamic model for biofuel production

1. 

Institut de Mathématiques de Bourgogne, COMUE Université Bourgogne-Franche Comté, 9 Avenue Alain Savary, 21078 Dijon, France

2. 

Department of Mathematical Sciences and Center, for Computational and Integrative Biology, Rutgers University 311 N 5th St, 08102 Camden NJ, USA

* Corresponding author

Received  March 2016 Revised  October 2016 Published  April 2017

Dynamic flux balance analysis of a bioreactor is based on the coupling between a dynamic problem, which models the evolution of biomass, feeding substrates and metabolites, and a linear program, which encodes the metabolic activity inside cells. We cast the problem in the language of optimal control and propose a hybrid formulation to model the full coupling between macroscopic and microscopic level. On a given location of the hybrid system we analyze necessary conditions given by the Pontryagin Maximum Principle and discuss the presence of singular arcs. For the multi-input case, under suitable assumptions, we prove that generically with respect to initial conditions optimal controls are bang-bang. For the single-input case the result is even stronger as we show that optimal controls are bang-bang.

Citation: Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008
References:
[1]

J. Alford, Bioprocess control: Advances and challenges, Computers & Chemical Engineering, 30 (2006), 1464-1475.  doi: 10.1016/j.compchemeng.2006.05.039.  Google Scholar

[2]

P. T. Benavides and U. Diwekar, Optimal control of biodiesel production in a batch reactor: Part Ⅰ: Deterministic control, Fuel, 94 (2012), 211-217.   Google Scholar

[3]

M. S. Branicky, Introduction to hybrid systems, In Handbook of Networked and Embedded Control Systems, Control Eng. , pages 91-116. Birkhäuser Boston, Boston, MA, 2005. doi: 10.1007/0-8176-4404-0_5.  Google Scholar

[4]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.  Google Scholar

[5]

É. Busvelle and J.-P. Gauthier, On determining unknown functions in differential systems, with an application to biological reactors, ESAIM Control Optim. Calc. Var., 9 (2003), 509-551.  doi: 10.1051/cocv:2003025.  Google Scholar

[6]

M. Caponigro, R. Ghezzi, B. Piccoli and E. Trélat, Regularization of chattering phenomena via bounded variation control, preprint, 2013, arXiv: 1303.5796. Google Scholar

[7]

Y. ChitourF. Jean and E. Trélat, Singular trajectories of control-affine systems, SIAM J. Control Optim., 47 (2008), 1078-1095.  doi: 10.1137/060663003.  Google Scholar

[8]

M. W. CovertC. Schilling and B. Palsson, Regulation of gene expression in flux balance models of metabolism, J Theor Biol., 213 (2001), 73-88.   Google Scholar

[9]

M. W. CovertN. XiaoT. J. Chen and J. R. Karr, Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli, Bioinformatics, 24 (2008), 2044-2050.   Google Scholar

[10]

M. D. Di Benedetto and A. Sangiovanni-Vincentelli, Hybrid Systems: Computation and Control Lecture Notes in Comput. Sci. 2034. Springer-Verlag, Berlin, Heidelberg, 2001. Google Scholar

[11]

T. EeveraK. Rajendran and S. Saradha, Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions, Renewable Energy, 34 (2009), 762-765.  doi: 10.1016/j.renene.2008.04.006.  Google Scholar

[12]

A. T. Fuller, Study of an optimum non-linear control system, J. Electronics Control (1), 15 (1963), 63-71.  doi: 10.1080/00207216308937555.  Google Scholar

[13]

M. Garavello and B. Piccoli, Hybrid necessary principle, SIAM J. Control Optim., 43 (2005), 1867-1887 (electronic).  doi: 10.1137/S0363012903416219.  Google Scholar

[14]

J.-P. GauthierH. Hammouri and S. Othman, A simple observer for nonlinear systems applications to bioreactors, IEEE Trans. Automat. Control, 37 (1992), 875-880.  doi: 10.1109/9.256352.  Google Scholar

[15]

J. L. Hjersted and M. A. Henson, Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models, Biotechnol. Prog., 22 (2006), 1239-1248.   Google Scholar

[16]

J. L. Hjersted and M. A. Henson, Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae, IET Systems Biology, 3 (2009), 167-179.   Google Scholar

[17]

J. L. HjerstedM. A. Henson and R. Mahadevan, Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and {E}thanol Production in Fed-Batch Culture, Biotechnology and Bioengineering, 97 (2007), 1190-1204.   Google Scholar

[18]

E. JungS. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tubercolosis model, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473-482.  doi: 10.3934/dcdsb.2002.2.473.  Google Scholar

[19]

D. KirschnerS. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792.  doi: 10.1007/s002850050076.  Google Scholar

[20]

A. Kremling, K. Bettenbrock and E. Gilles, Analysis of global control of Escherichia coli carbohydrate uptake BMC Systems Biology, 1 (2007), p42. doi: 10.1186/1752-0509-1-42.  Google Scholar

[21]

R. MahadevanJ. Edwards and F. Doyle, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys J., 83 (2002), 1331-1340.   Google Scholar

[22]

J. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optimal Control Applications Methods, 20 (1999), 145-164.  doi: 10.1002/(SICI)1099-1514(199905/06)20:3<145::AID-OCA651>3.0.CO;2-J.  Google Scholar

[23] B. O. Palsson, Systems Biology -Property of Reconstructed Networks, Cambridge University Press, 2006.   Google Scholar
[24]

L. S. Pontryagin, V. G. Boltyanskiǐ, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes ,"Nauka", Moscow, fourth edition, 1983.  Google Scholar

[25]

A. Rapaport and D. Dochain, Minimal time control of fed-batch processes with growth functions having several maxima, IEEE Trans. Automat. Contr., 56 (2011), 2671-2676.  doi: 10.1109/TAC.2011.2159424.  Google Scholar

[26]

H. J. Sussmann, A nonsmooth hybrid maximum principle, In Stability and stabilization of nonlinear systems (Ghent, 1999), volume 246 of Lecture Notes in Control and Inform. Sci. , pages 325-354. Springer, London, 1999. doi: 10.1007/1-84628-577-1_17.  Google Scholar

[27]

S. TiwariP. VermaP. Singh and R. Tuli, Plants as bioreactors for the production of vaccine antigens, Biotechnology Advances, 27 (2009), 449-467.  doi: 10.1016/j.biotechadv.2009.03.006.  Google Scholar

[28]

K. Yamuna Rani and V. S. Ramachandra Rao, Control of fermenters -a review, Bioprocess and Biosystems Engineering, 21 (1999), 77-88.  doi: 10.1007/PL00009066.  Google Scholar

show all references

References:
[1]

J. Alford, Bioprocess control: Advances and challenges, Computers & Chemical Engineering, 30 (2006), 1464-1475.  doi: 10.1016/j.compchemeng.2006.05.039.  Google Scholar

[2]

P. T. Benavides and U. Diwekar, Optimal control of biodiesel production in a batch reactor: Part Ⅰ: Deterministic control, Fuel, 94 (2012), 211-217.   Google Scholar

[3]

M. S. Branicky, Introduction to hybrid systems, In Handbook of Networked and Embedded Control Systems, Control Eng. , pages 91-116. Birkhäuser Boston, Boston, MA, 2005. doi: 10.1007/0-8176-4404-0_5.  Google Scholar

[4]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.  Google Scholar

[5]

É. Busvelle and J.-P. Gauthier, On determining unknown functions in differential systems, with an application to biological reactors, ESAIM Control Optim. Calc. Var., 9 (2003), 509-551.  doi: 10.1051/cocv:2003025.  Google Scholar

[6]

M. Caponigro, R. Ghezzi, B. Piccoli and E. Trélat, Regularization of chattering phenomena via bounded variation control, preprint, 2013, arXiv: 1303.5796. Google Scholar

[7]

Y. ChitourF. Jean and E. Trélat, Singular trajectories of control-affine systems, SIAM J. Control Optim., 47 (2008), 1078-1095.  doi: 10.1137/060663003.  Google Scholar

[8]

M. W. CovertC. Schilling and B. Palsson, Regulation of gene expression in flux balance models of metabolism, J Theor Biol., 213 (2001), 73-88.   Google Scholar

[9]

M. W. CovertN. XiaoT. J. Chen and J. R. Karr, Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli, Bioinformatics, 24 (2008), 2044-2050.   Google Scholar

[10]

M. D. Di Benedetto and A. Sangiovanni-Vincentelli, Hybrid Systems: Computation and Control Lecture Notes in Comput. Sci. 2034. Springer-Verlag, Berlin, Heidelberg, 2001. Google Scholar

[11]

T. EeveraK. Rajendran and S. Saradha, Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions, Renewable Energy, 34 (2009), 762-765.  doi: 10.1016/j.renene.2008.04.006.  Google Scholar

[12]

A. T. Fuller, Study of an optimum non-linear control system, J. Electronics Control (1), 15 (1963), 63-71.  doi: 10.1080/00207216308937555.  Google Scholar

[13]

M. Garavello and B. Piccoli, Hybrid necessary principle, SIAM J. Control Optim., 43 (2005), 1867-1887 (electronic).  doi: 10.1137/S0363012903416219.  Google Scholar

[14]

J.-P. GauthierH. Hammouri and S. Othman, A simple observer for nonlinear systems applications to bioreactors, IEEE Trans. Automat. Control, 37 (1992), 875-880.  doi: 10.1109/9.256352.  Google Scholar

[15]

J. L. Hjersted and M. A. Henson, Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models, Biotechnol. Prog., 22 (2006), 1239-1248.   Google Scholar

[16]

J. L. Hjersted and M. A. Henson, Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae, IET Systems Biology, 3 (2009), 167-179.   Google Scholar

[17]

J. L. HjerstedM. A. Henson and R. Mahadevan, Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and {E}thanol Production in Fed-Batch Culture, Biotechnology and Bioengineering, 97 (2007), 1190-1204.   Google Scholar

[18]

E. JungS. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tubercolosis model, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473-482.  doi: 10.3934/dcdsb.2002.2.473.  Google Scholar

[19]

D. KirschnerS. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792.  doi: 10.1007/s002850050076.  Google Scholar

[20]

A. Kremling, K. Bettenbrock and E. Gilles, Analysis of global control of Escherichia coli carbohydrate uptake BMC Systems Biology, 1 (2007), p42. doi: 10.1186/1752-0509-1-42.  Google Scholar

[21]

R. MahadevanJ. Edwards and F. Doyle, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys J., 83 (2002), 1331-1340.   Google Scholar

[22]

J. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optimal Control Applications Methods, 20 (1999), 145-164.  doi: 10.1002/(SICI)1099-1514(199905/06)20:3<145::AID-OCA651>3.0.CO;2-J.  Google Scholar

[23] B. O. Palsson, Systems Biology -Property of Reconstructed Networks, Cambridge University Press, 2006.   Google Scholar
[24]

L. S. Pontryagin, V. G. Boltyanskiǐ, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes ,"Nauka", Moscow, fourth edition, 1983.  Google Scholar

[25]

A. Rapaport and D. Dochain, Minimal time control of fed-batch processes with growth functions having several maxima, IEEE Trans. Automat. Contr., 56 (2011), 2671-2676.  doi: 10.1109/TAC.2011.2159424.  Google Scholar

[26]

H. J. Sussmann, A nonsmooth hybrid maximum principle, In Stability and stabilization of nonlinear systems (Ghent, 1999), volume 246 of Lecture Notes in Control and Inform. Sci. , pages 325-354. Springer, London, 1999. doi: 10.1007/1-84628-577-1_17.  Google Scholar

[27]

S. TiwariP. VermaP. Singh and R. Tuli, Plants as bioreactors for the production of vaccine antigens, Biotechnology Advances, 27 (2009), 449-467.  doi: 10.1016/j.biotechadv.2009.03.006.  Google Scholar

[28]

K. Yamuna Rani and V. S. Ramachandra Rao, Control of fermenters -a review, Bioprocess and Biosystems Engineering, 21 (1999), 77-88.  doi: 10.1007/PL00009066.  Google Scholar

Figure 1.  Bioprocess scheme exhibiting full coupling between metabolic activity and external dynamics
[1]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[2]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[5]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[6]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[9]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[10]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[11]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[12]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[13]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[14]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[15]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[16]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[17]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[18]

Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[19]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (102)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]