[1]
|
S. C. Brenner and L. R. Scott,
The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, 2nd edition, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-3658-8.
|
[2]
|
E. Casas and E. Zuazua, Spike controls for elliptic and parabolic PDEs, Systems Control Lett., 62 (2013), 311-318.
doi: 10.1016/j.sysconle.2013.01.001.
|
[3]
|
E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions, SIAM J. Control Optim., 50 (2012), 1735-1752.
doi: 10.1137/110843216.
|
[4]
|
E. Casas, C. Clason and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions, SIAM J. Control Optim., 51 (2013), 28-63.
doi: 10.1137/120872395.
|
[5]
|
E. Casas, R. Herzog and G. Wachsmuth, Approximation of sparse controls in semilinear equations by piecewise linear functions, Numer. Math., 122 (2012), 645-669.
doi: 10.1007/s00211-012-0475-7.
|
[6]
|
E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$ cost functional, SIAM J. Optim., 22 (2012), 795-820.
doi: 10.1137/110834366.
|
[7]
|
E. Casas, R. Herzog and G. Wachsmuth, Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations, ESAIM:COCV, 23 (2017), 263-295.
doi: 10.1051/cocv/2015048.
|
[8]
|
E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces, SIAM J. Control Optim., 52 (2014), 339-364.
doi: 10.1137/13092188X.
|
[9]
|
E. Casas and K. Kunisch, Parabolic control problems in space-time measure spaces, ESAIM Control Optim. Calc. Var., 22 (2016), 355-370.
doi: 10.1051/cocv/2015008.
|
[10]
|
E. Casas, B. Vexler and E. Zuazua, Sparse initial data identification for parabolic PDE and its finite element approximations, Math. Control Relat. Fields, 5 (2015), 377-399.
doi: 10.3934/mcrf.2015.5.377.
|
[11]
|
R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations, SIAM J. Control Optim., 50 (2012), 943-963.
doi: 10.1137/100815037.
|
[12]
|
K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems, SIAM J. Control Optim., 52 (2014), 3078-3108.
doi: 10.1137/140959055.
|
[13]
|
O. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva,
Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, 1968.
|
[14]
|
I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numer. Math., 120 (2012), 345-386.
doi: 10.1007/s00211-011-0409-9.
|
[15]
|
K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space, SIAM J. Control Optim., 51 (2013), 2788-2808.
doi: 10.1137/120889137.
|
[16]
|
P. -A. Raviart and J. -M. Thomas,
Introduction á L'analyse Numérique des Équations aux Dérivées Partielles, Collection Mathématiques Appliquées pour la Maî trise. [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983.
|
[17]
|
G. Stadler, Elliptic optimal control problems with $L^1$-control cost and applications for the placement of control devices, Comput. Optim. Appl., 44 (2009), 159-181.
doi: 10.1007/s10589-007-9150-9.
|
[18]
|
D. Wachsmuth and G. Wachsmuth, Regularization error estimates and discrepancy principle for optimal control problems with inequality constraints, Control Cybernet, 40 (2011), 1125-1158.
|