For a system that is governed by the isothermal Euler equations with friction for ideal gas, the corresponding field of characteristic curves is determined by the velocity of the flow. This velocity is determined by a second-order quasilinear hyperbolic equation. For the corresponding initial-boundary value problem with Neumann-boundary feedback, we consider non-stationary solutions locally around a stationary state on a finite time interval and discuss the well-posedness of this kind of problem. We introduce a strict $H^2$-Lyapunov function and show that the boundary feedback constant can be chosen such that the $H^2$-Lyapunov function and hence also the $H^2$-norm of the difference between the non-stationary and the stationary state decays exponentially with time.
Citation: |
[1] |
F. Alabau-Boussouira, L. Rosier and V. Perrollaz, Finite-time stabilization of a network of strings, Mathematical Control and Related Fields (MCRF), 5 (2015), 721-742.
doi: 10.3934/mcrf.2015.5.721.![]() ![]() ![]() |
[2] |
H. Alli and T. Singhj, On the feedback control of the wave equation, Journal of Sound and Vibration, 234 (2000), 625-640.
doi: 10.1109/CCA.1996.558717.![]() ![]() |
[3] |
H. Attouch, G. Buttazzo and G. Michaille,
Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, , Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia, 2006.
![]() ![]() |
[4] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.
doi: 10.3934/nhm.2006.1.295.![]() ![]() ![]() |
[5] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.
doi: 10.3934/nhm.2006.1.41.![]() ![]() ![]() |
[6] |
G. Bastin and J. -M. Coron,
Stability and Boundary Stabilization of 1-d Hyperbolic Systems, Birkhäuser, Basel, Switzerland, 2016.
doi: 10.1007/978-3-319-32062-5.![]() ![]() ![]() |
[7] |
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W Function, Adv. Comp. Math., 5 (1996), 329-359.
doi: 10.1007/BF02124750.![]() ![]() ![]() |
[8] |
J. M. Coron and G. Bastin, Dissipative boundary conditions for one-dimensional quasi-linear
hyperbolic systems: Lyapunov stability for the C1-Norm, SIAM J. Control Optim., 53 (2015), 1464-1483.
doi: 10.1137/14097080X.![]() ![]() ![]() |
[9] |
J. M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11.
doi: 10.1109/TAC.2006.887903.![]() ![]() ![]() |
[10] |
J. M. Coron, G. Bastin and B. d'Andréa-Novel, Disspative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control Optim., 47 (2008), 1460-1498.
doi: 10.1137/070706847.![]() ![]() ![]() |
[11] |
J. M. Coron,
Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.
![]() ![]() |
[12] |
M. Dick, M. Gugat and G. Leugering, A Strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction, Numerical Algebra Control and Optimization, 1 (2011), 225-244.
doi: 10.3934/naco.2011.1.225.![]() ![]() ![]() |
[13] |
M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Netw. Heterog. Media, 5 (2010), 691-709.
doi: 10.3934/nhm.2010.5.691.![]() ![]() ![]() |
[14] |
J. M. Greenberg and T. T. Li, The effect of boundary damping for the quasilinear wave equation, J. Differential Equations, 52 (1984), 66-75.
doi: 10.1016/0022-0396(84)90135-9.![]() ![]() ![]() |
[15] |
M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations, IMA J. Math. Control Inform., 27 (2010), 189-203.
doi: 10.1093/imamci/dnq007.![]() ![]() ![]() |
[16] |
M. Gugat and M. Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction, Math. Control and Related Fields, 1 (2011), 469-491.
doi: 10.3934/mcrf.2011.1.469.![]() ![]() ![]() |
[17] |
M. Gugat, F. Hante, M. Hirsch-Dick and G. Leugering, Stationary states in gas networks, Netw. Heterog. Media, 10 (2015), 295-320.
doi: 10.3934/nhm.2015.10.295.![]() ![]() ![]() |
[18] |
M. Gugat, M. Herty, A. Klar, G. Leugering and V. Schleper, Well-posedness of networked hyperbolic systems of balance laws, International Series of Numerical Mathematics, 160 (2012), 123-146.
doi: 10.1007/978-3-0348-0133-1_7.![]() ![]() ![]() |
[19] |
M. Gugat, G. Leugering, S. Tamasoiu and K. Wang, $H^2$-stabilization of the isothermal Euler equations: A Lyapunov function approach, Chinese Annals of Mathematics, Series B, 33 (2012), 479-500.
doi: 10.1007/s11401-012-0727-y.![]() ![]() ![]() |
[20] |
M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314.
doi: 10.3934/nhm.2010.5.299.![]() ![]() ![]() |
[21] |
M. Gugat and M. Tucsnak, An example for the switching delay feedback stabilization of an infinite dimensional system: The boundary stabilization of a string, Syst. Cont. Lett., 60 (2011), 226-233.
doi: 10.1016/j.sysconle.2011.01.004.![]() ![]() ![]() |
[22] |
M. Gugat and S. Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, J. Math. Anal. Appl., 454 (2017), 439-452.
doi: 10.1016/j.jmaa.2017.04.064.![]() ![]() ![]() |
[23] |
M. Gugat,
Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems, SpringerBriefs in Control, Automation and Robotics, Springer, New York, New York, 2015.
doi: 10.1007/978-3-319-18890-4.![]() ![]() ![]() |
[24] |
L. Hörmander,
Lectures on Nonlinear Hyperbolic Differential Equations, Springer Verlag, Berlin, 1997.
![]() ![]() |
[25] |
T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal., 63 (1977), 273-294.
doi: 10.1007/BF00251584.![]() ![]() ![]() |
[26] |
V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control and Optimization, 29 (1991), 197-208.
doi: 10.1137/0329011.![]() ![]() ![]() |
[27] |
J. H. Lambert, Observationes variae in mathesin puram, Acta Helvetica, physico-mathematico-anatomico-botanico-medica, 3 (1758), 128-168.
![]() |
[28] |
T. T. Li,
Global Classical Solutions for Quasilinear Hyperbolic Systems, RAM Res. Appl. Math. 32, Masson, Paris, 1994.
![]() ![]() |
[29] |
T. T. Li and W. C. Yu,
Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke Univ. Math. Ser. V, 1985.
![]() ![]() |
[30] |
T. T. Li, B. Rao and Z. Wang, A note on the one-side exact boundary observability for quasilinear hyperbolic systems, Georgian Mathematical Journal, 15 (2008), 571-580.
![]() ![]() |
[31] |
Z. H. Luo, B. Z. Guo and O. Morgul,
Stability and Stabilization of Infinite Dimensional Systems with Applications, Communications and Control Engineering Series. Springer-Verlag London Ltd. , London, 1999.
doi: 10.1007/978-1-4471-0419-3.![]() ![]() ![]() |
[32] |
F. Mazenc and C. Prieur, Strict Lyapunov functions for semilinear parabolic partial differential equations, Math. Control and Related Fields, 1 (2011), 231-250.
doi: 10.3934/mcrf.2011.1.231.![]() ![]() ![]() |
[33] |
S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Disc. Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581.
doi: 10.3934/dcdss.2009.2.559.![]() ![]() ![]() |
[34] |
M. Slemrod, Boundary feedback stabilization for a quasilinear wave equation, in Control Theory for Distributed Parameter Systems and Applications, Lecture Notes in Control and
Inform. Sci., Springer-Verlag, Berlin, 54 (1983), 221-237.
doi: 10.1007/BFb0043951.![]() ![]() ![]() |
[35] |
M. E. Taylor,
Partial Differential Equations, Tome Ⅲ, Nonlinear equations, Applied Mathematical Sciences, Vol. 117, Springer-Verlag, New-York, 1996.
doi: 10.1007/978-1-4684-9320-7.![]() ![]() ![]() |
[36] |
M. Tucsnak and G. Weiss,
Observation and Control for Operator Semigroups, Birkhäuser, Basel-Boston-Berlin, 2009.
doi: 10.1007/978-3-7643-8994-9.![]() ![]() ![]() |
[37] |
Z. Q. Wang, Exact boundary controllability for nonautonomous quasilinear wave equations, Math. Meth. Appl. Sci., 30 (2007), 1311-1327.
doi: 10.1002/mma.843.![]() ![]() ![]() |
[38] |
G. P. Zou, N. Cheraghi and F. Taheri, Fluid-induced vibration of composite natural gas pipelines, International Journal of Solids and Structures, 42 (2005), 1253-1268.
doi: 10.1016/j.ijsolstr.2004.07.001.![]() ![]() |