An optimal control problem governed by a class of semilinear elliptic equations with nonlinear Neumann boundary conditions is studied in this paper. It is pointed out that the cost functional considered may not be convex. Using a relaxation method, some existence results of an optimal control are obtained.
Citation: |
[1] |
H. Amann and M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1977), 779-790.
doi: 10.1512/iumj.1978.27.27050.![]() ![]() ![]() |
[2] |
Z. Artstein, On a variational problem, J. Math. Anal. Appl., 45 (1974), 405-415.
doi: 10.1016/0022-247X(74)90081-X.![]() ![]() ![]() |
[3] |
E. J. Balder, New existence results for optimal controls in the absence of convexity: The importance of extremality, SIAM J. Control Optim., 32 (1994), 890-916.
doi: 10.1137/S0363012990193099.![]() ![]() ![]() |
[4] |
A. Cellinaand and G. Colombo, On a classical problem of the calculus of variations without convexity assumptions, Ann. Inst. H. Poincaré Anal. Non Linéaire., 7 (1990), 97-106.
doi: 10.1016/S0294-1449(16)30306-7.![]() ![]() ![]() |
[5] |
L. Cesari,
Optimization Theory and Applications, Problems with Ordinary Differential Equations, Spring, New York, 1983.
doi: 10.1007/978-1-4613-8165-5.![]() ![]() ![]() |
[6] |
P. Drábek, A. Kufner and F. Nicolosi,
Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co. , Berlin, 1997.
doi: 10.1515/9783110804775.![]() ![]() ![]() |
[7] |
F. Flores-Bazán and S. Perrotta, Nonconvex variational problems related to a hyperbolic equation, SIAM J. Control Optim, 37 (1999), 1751-1766.
doi: 10.1137/S0363012998332299.![]() ![]() ![]() |
[8] |
G. Giuseppina and M. Federica, On the existence of optimal controls for SPDEs with boundary noise and boundary control, SIAM J. Control Optim., 51 (2013), 1909-1939.
doi: 10.1137/110855855.![]() ![]() ![]() |
[9] |
V. O. Kapustyan and O. P. Kogut, On the existence of optimal coefficient controls for a nonlinear Neumann boundary value problem, Diff. Eqs., 46 (2010), 923-938.
doi: 10.1134/S0012266110070013.![]() ![]() ![]() |
[10] |
X. J. Li and J. M. Yong,
Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser Boston, Cambridge, MA, 1995.
doi: 10.1007/978-1-4612-4260-4.![]() ![]() ![]() |
[11] |
P. Lin and G. S. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255.
doi: 10.1016/j.matpur.2013.06.001.![]() ![]() ![]() |
[12] |
H. W. Lou, Existence and nonexistence results of an optimal control problem by using relaxed control, SIAM J. Control Optim., 46 (2007), 1923-1941.
doi: 10.1137/050628386.![]() ![]() ![]() |
[13] |
H. W. Lou, Analysis of the optimal relaxed control to an optimal control problem, Appl. Math. Optim., 59 (2009), 75-97.
doi: 10.1007/s00245-008-9045-x.![]() ![]() ![]() |
[14] |
H. W. Lou, J. J. Wen and Y. S. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. F., 4 (2014), 289-314.
doi: 10.3934/mcrf.2014.4.289.![]() ![]() ![]() |
[15] |
Q. Lü and G. S. Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations, SIAM J. Control Optim., 49 (2011), 1124-1149.
doi: 10.1137/10081277X.![]() ![]() ![]() |
[16] |
S. Luan, Nonexistence and existence of an optimal control problem governed by a class of semilinear elliptic equations, J. Optim. Theory Appl., 158 (2013), 1-10.
doi: 10.1007/s10957-012-0244-x.![]() ![]() ![]() |
[17] |
S. Luan, Nonexistence and existence results of an optimal control problem governed by a class of multisolution semilinear elliptic equations, Nonlinear Anal., 128 (2015), 380-390.
doi: 10.1016/j.na.2015.08.015.![]() ![]() ![]() |
[18] |
E. J. McShane, Generalized curves, Duke Math. J., 6 (1940), 513-536.
doi: 10.1215/S0012-7094-40-00642-1.![]() ![]() ![]() |
[19] |
L. W. Neustadt, The existence of optimal controls in the absence of convexity conditions, J. Math. Anal. Appl., 7 (1963), 110-117.
doi: 10.1016/0022-247X(63)90081-7.![]() ![]() ![]() |
[20] |
K. D. Phung, G. S. Wang and X. Zhang, On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst. Ser. B., 8 (2007), 925-941.
doi: 10.3934/dcdsb.2007.8.925.![]() ![]() ![]() |
[21] |
J. P. Raymond, Existence theorems in optimal control theory without convexity assumptions, J. Optim. Theory Appl., 67 (1990), 109-132.
doi: 10.1007/BF00939738.![]() ![]() ![]() |
[22] |
J. Warga,
Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.
![]() ![]() |
[23] |
P. Winkert, $L^∞$ estimates for nonlinear elliptic Neumann boundary value problems, Nonlinear Differ. Equ. Appl., 17 (2010), 289-302.
doi: 10.1007/s00030-009-0054-5.![]() ![]() ![]() |
[24] |
L. C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, C. R. Sci. Lettres Varsovie, C. Ⅲ., 30 (1937), 212-234.
![]() |