March  2018, 8(1): 57-88. doi: 10.3934/mcrf.2018003

Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls

1. 

School of Mathematical Sciences, and LMNS, Fudan University, Shanghai 200433, China,

2. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

Dedicated to Professor Eduardo Casas at his 60th birthdate

Received  March 2017 Revised  October 2017 Published  January 2018

Fund Project: The first author was supported in part by NSFC grant 11371104, the second author was supported in part by NSF grant DMS-1406776.

An optimal control problem for a semilinear elliptic equation of divergenceform is considered. Both the leading term and the semilinear term of the state equationcontain the control. The well-known Pontryagin type maximum principle for the optimal controls is the first-order necessary condition. When such a first-order necessary condition is singular in some sense, certain type of the second-order necessary condition will come in naturally. The aim of this paper is to explore such kind of conditions for our optimal control problem.

Citation: Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control and Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. 

[2]

G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002.

[3]

J. F. Bonnans and A. Hermant, No-gap second-order optimality conditions for optimal control problems with a single state constraint and control, Math. Program., Ser. B, 117 (2009), 21-50. 

[4]

J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints, Ann. I. H. Poincare, 26 (2009), 561-598. 

[5]

E. Casas, Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Optim., 26 (1992), 21-37. 

[6]

E. Casas, Second order analysis for bang-bang control problems of PDEs, SIAM J. Control Optim., 50 (2012), 2355-2372. 

[7]

E. CasasJ. C. de Los Reye and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints, SIAM J. Optim., 19 (2008), 616-643. 

[8]

E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints, SIAM J. Control Optim., 40 (2002), 1431-1454. 

[9]

E. Casas and F. Tröltzsch, Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations, Appl. Math. Optim., 39 (1999), 211-227. 

[10]

E. Casas and F. Tröltzsch, Second-order necessary and sufficient optimality conditions for optimality conditions for optimization problems and applications to control theory, SIAM J. Optim., 13 (2002), 406-431. 

[11]

E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718. 

[12]

E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: Improving results expected from abstract theory, SIAM J. Optim., 22 (2012), 261-279. 

[13]

E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control, Jahresber Dtsch Math-Ver, 117 (2015), 3-44. 

[14]

E. CasasF. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations, SIAM J. Control Optim., 38 (2000), 1369-1391. 

[15]

H. O. Fattorini, Relaxed controls in infinite dimensional systems, International Series of Numerical Mathematics, 100 (1991), 115-128. 

[16]

R. Gabasov and F. M. Kirillova, High order necessary conditions for optimality, SIAM J. Control Optim., 10 (1972), 127-168. 

[17]

R. Gamkrelidze, Principle of Optimal Control Theory, Plenum Press, New York, 1978.

[18]

H. J. Kelly, A second variation test for singular extremals, AIAA J., 2 (1964), 1380-1382. 

[19]

H. W. Knobloch, Higher Order Necessary Conditions in Optimal Control Theory, Lecture Notes in Control & Inform. Sci., Springer-Verlag, New York, 1981. doi: 10.1007/978-1-4612-0873-0.

[20]

R. E. Kopp and H. G. Moyer, Necessary conditions for singular extremals, AIAA J., 3 (1965), 1439-1444. 

[21]

A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM J. Control Optim., 15 (1977), 256-293. 

[22]

B. Li and H. Lou, Optimality Conditions for semilinear hyperbolic equations with controls in coefficients, Appl. Math. Optim., 65 (2012), 371-402. 

[23]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.

[24]

H. Lou, Second-order necessary/sufficient optimality conditions for optimal control problems in the absence of linear structure, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), Special Issue, 1445-1464.

[25]

H. Lou, Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM: Control, Optimization and Calculus of Variations, 17 (2011), 975-994. 

[26]

H. Lou and J. Yong, Optimality conditions for semilinear elliptic equations with leading term containing controls, SIAM J. Control Optim., 48 (2009), 2366-2387. 

[27]

H. D. Mittelmann, Verification of second-order sufficient optimality conditions for semilinear elliptic and parabolic control problems, Comp. Optim. Appl., 20 (2001), 93-110. 

[28]

J. P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints, Discrete Contin. Dynam. Systems, 6 (2000), 431-450. 

[29]

A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwise control-state constraints, SIAM J. Control Optim., 42 (2003), 138-154. 

[30]

A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints, SIAM J. Optim., 17 (2006), 776-794. 

[31]

L. Wang and P. He, Second-order optimality conditions for optimal control problems governed by 3-dimensional Nevier-Stokes equations, Acta Math. Scientia, 26 (2006), 729-734. 

[32]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.

[33]

A. Zygmund, Trigonometric Series, 3$^{rd}$ edition, Cambridge University Press, Cambridge, 2002.

show all references

Dedicated to Professor Eduardo Casas at his 60th birthdate

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. 

[2]

G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002.

[3]

J. F. Bonnans and A. Hermant, No-gap second-order optimality conditions for optimal control problems with a single state constraint and control, Math. Program., Ser. B, 117 (2009), 21-50. 

[4]

J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints, Ann. I. H. Poincare, 26 (2009), 561-598. 

[5]

E. Casas, Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Optim., 26 (1992), 21-37. 

[6]

E. Casas, Second order analysis for bang-bang control problems of PDEs, SIAM J. Control Optim., 50 (2012), 2355-2372. 

[7]

E. CasasJ. C. de Los Reye and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints, SIAM J. Optim., 19 (2008), 616-643. 

[8]

E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints, SIAM J. Control Optim., 40 (2002), 1431-1454. 

[9]

E. Casas and F. Tröltzsch, Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations, Appl. Math. Optim., 39 (1999), 211-227. 

[10]

E. Casas and F. Tröltzsch, Second-order necessary and sufficient optimality conditions for optimality conditions for optimization problems and applications to control theory, SIAM J. Optim., 13 (2002), 406-431. 

[11]

E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718. 

[12]

E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: Improving results expected from abstract theory, SIAM J. Optim., 22 (2012), 261-279. 

[13]

E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control, Jahresber Dtsch Math-Ver, 117 (2015), 3-44. 

[14]

E. CasasF. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations, SIAM J. Control Optim., 38 (2000), 1369-1391. 

[15]

H. O. Fattorini, Relaxed controls in infinite dimensional systems, International Series of Numerical Mathematics, 100 (1991), 115-128. 

[16]

R. Gabasov and F. M. Kirillova, High order necessary conditions for optimality, SIAM J. Control Optim., 10 (1972), 127-168. 

[17]

R. Gamkrelidze, Principle of Optimal Control Theory, Plenum Press, New York, 1978.

[18]

H. J. Kelly, A second variation test for singular extremals, AIAA J., 2 (1964), 1380-1382. 

[19]

H. W. Knobloch, Higher Order Necessary Conditions in Optimal Control Theory, Lecture Notes in Control & Inform. Sci., Springer-Verlag, New York, 1981. doi: 10.1007/978-1-4612-0873-0.

[20]

R. E. Kopp and H. G. Moyer, Necessary conditions for singular extremals, AIAA J., 3 (1965), 1439-1444. 

[21]

A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM J. Control Optim., 15 (1977), 256-293. 

[22]

B. Li and H. Lou, Optimality Conditions for semilinear hyperbolic equations with controls in coefficients, Appl. Math. Optim., 65 (2012), 371-402. 

[23]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.

[24]

H. Lou, Second-order necessary/sufficient optimality conditions for optimal control problems in the absence of linear structure, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), Special Issue, 1445-1464.

[25]

H. Lou, Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM: Control, Optimization and Calculus of Variations, 17 (2011), 975-994. 

[26]

H. Lou and J. Yong, Optimality conditions for semilinear elliptic equations with leading term containing controls, SIAM J. Control Optim., 48 (2009), 2366-2387. 

[27]

H. D. Mittelmann, Verification of second-order sufficient optimality conditions for semilinear elliptic and parabolic control problems, Comp. Optim. Appl., 20 (2001), 93-110. 

[28]

J. P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints, Discrete Contin. Dynam. Systems, 6 (2000), 431-450. 

[29]

A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwise control-state constraints, SIAM J. Control Optim., 42 (2003), 138-154. 

[30]

A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints, SIAM J. Optim., 17 (2006), 776-794. 

[31]

L. Wang and P. He, Second-order optimality conditions for optimal control problems governed by 3-dimensional Nevier-Stokes equations, Acta Math. Scientia, 26 (2006), 729-734. 

[32]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.

[33]

A. Zygmund, Trigonometric Series, 3$^{rd}$ edition, Cambridge University Press, Cambridge, 2002.

[1]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[2]

Bo Li, Hongwei Lou. Cesari-type conditions for semilinear elliptic equation with leading term containing controls. Mathematical Control and Related Fields, 2011, 1 (1) : 41-59. doi: 10.3934/mcrf.2011.1.41

[3]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[4]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[5]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[6]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[7]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[8]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control and Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[9]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[10]

Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001

[11]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control and Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[12]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[13]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[14]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[15]

Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial and Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329

[16]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial and Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[17]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[18]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control and Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[19]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[20]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (247)
  • HTML views (267)
  • Cited by (2)

Other articles
by authors

[Back to Top]