    March  2018, 8(1): 89-115. doi: 10.3934/mcrf.2018004

## Drag minimization for the obstacle in compressible flow using shape derivatives and finite volumes

 1 Faculty of Mathematics and Computer Science, Banacha 22, 90-238 Lodz, University of Lodz, Poland 2 Institut Elie Cartan de Nancy, UMR 7502, 54506 Vandoeuvre lès Nancy Cedex, France 3 Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-338 Warsaw, Poland

Received  April 2017 Revised  September 2017 Published  January 2018

In the paper the shape optimization problem for the static, compressible Navier-Stokes equations is analyzed. The drag minimizing of an obstacle immersed in the gas stream is considered. The continuous gradient of the drag is obtained by application of the sensitivity formulas derived in the works of one of the co-authors. The numerical approximation scheme uses mixed Finite Volume - Finite Element formulation. The novelty of our numerical method is a particular choice of the regularizing term for the non-homogeneous Stokes boundary value problem, which may be tuned to obtain the best accuracy. The convergence of the discrete solutions for the model under considerations is proved. The non-linearity of the model is treated by means of the fixed point procedure. The numerical example of an optimal shape is given.

Citation: Anna Kaźmierczak, Jan Sokolowski, Antoni Zochowski. Drag minimization for the obstacle in compressible flow using shape derivatives and finite volumes. Mathematical Control & Related Fields, 2018, 8 (1) : 89-115. doi: 10.3934/mcrf.2018004
##### References:
  R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Google Scholar  H. Beirão da Veiga, Stationary motions and the incompressible limit for compressible viscous fluids, Houston J. Math., 13 (1987), 527-544. Google Scholar  H. Beirão da Veiga, An $L^p$-theory for the $n$-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys., 109 (1987), 229-248. Google Scholar  H. Beirão da Veiga, Existence results in Sobolev spaces for a transport equation, Ricerche Mat., 36 (1987), 173-184. Google Scholar  V. Berinde, Iterative Approximation of Fixed Points Lecture Notes in Mathematics 1912, Springer Verlag, 2007. Google Scholar  C. Brandenburg, F. Lindemann, M. Ulbrich and S. Ulbrich, Advanced numerical methods for PDE constrained optimization with application to optimal design in Navier Stokes flow, Constrained Optimization and Optimal Control for partial Differential Equations, in Series: Internat. Ser. Numer. Math. , Birkhäuser/Springer Basel AG, Basel, 160 (2012), 257-275. Google Scholar  E. Casas, An optimal control problem governed by the evolution Navier-Stokes equations. In S. S. Sritharan, editor, Optimal Control of Viscous Flows, SIAM, Philadelphia, (1998), 79-95. Google Scholar  R. Eymard, T. Gallouet, R. Herbin and J. Latche, A convergent finite element-finite volume scheme for the compressible Stokes problem; part Ⅱ -The isentropic case, Mathematics of Computation, 79 (2010), 649-675. Google Scholar  E. Feireisl, T. Karper and M. Pokorný, Mathematical Theory of Compressible Viscous Fluids, Birkhäuser, Basel, 2016. Google Scholar  T. Gallouet, R. Herbin and J. Latche, A convergent finite element-finite volume scheme for the compressible Stokes problem; part â… -The isothermal case, Mathematics of Computation, 78 (2009), 1333-1352. Google Scholar  D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001. Google Scholar  T. Kondoh, T. Matsumori and A. Kawamoto, Drag minimization and lift maximization in laminar flows via topology optimization employing simple objective function expressions based on body force integration, Struct. Multidiscip. Optim., 45 (2012), 693-701. Google Scholar  B. Mohammadi and O. Pironneau, Shape optimization in fluid mechanics, Ann. Rev. Fluid Mech., 36 (2004), 255-279. Google Scholar  B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids, 2$^{nd}$ edition, Oxford Univ. Press, Oxford, 2010. Google Scholar  S. Novo, Compressible Navier-Stokes model with inflow-outflow boundary conditions, J. Math. Fluid Mech., 7 (2005), 485-514. Google Scholar  A. Novotný, About steady transport equation. Ⅰ. $L^p$-approach in domains with smooth boundaries, Comment. Math. Univ. Carolin., 37 (1996), 43-89. Google Scholar  A. Novotný, About steady transport equation. Ⅱ. Schauder estimates in domains with smooth boundaries, Portugal. Math., 54 (1997), 317-333. Google Scholar  A. Novotný and M. Padula, Existence and uniqueness of stationary solutions for viscous compressible heat conductive fluid with large potential and small non-potential external forces, Sibirsk. Mat. Zh. , 34 (1993), 120-146 (in Russian). Google Scholar  A. Novotný and M. Padula, $L^p$-approach to steady flows of viscous compressible fluids in exterior domains, Arch. Ration. Mech. Anal., 126 (1994), 243-297. Google Scholar  A. Novotný and M. Padula, Physically reasonable solutions to steady compressible Navier-Stokes equations in $3D$-exterior domains $(v_{âˆž}\ne 0)$, Math. Ann., 308 (1997), 439-489. Google Scholar  A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Univ. Press, Oxford, 2004. Google Scholar  M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch. Ration. Mech. Anal., 97 (1987), 89-102. Google Scholar  P. I. Plotnikov, E. V. Ruban and J. Sokolowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations: well-posedness and sensitivity analysis, SIAM J. Math. Anal., 40 (2008), 1152-1200. Google Scholar  P. I. Plotnikov, E. V. Ruban and J. Sokolowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations, J. Math. Pures Appl., 92 (2009), 113-162. Google Scholar  P. Plotnikov and J. Sokolowski, Domain dependence of solutions to compressible Navier-Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), 1165-1197. Google Scholar  P. Plotnikov and J. Sokolowski, Shape derivative of drag functional, SIAM J. Control Optim., 48 (2010), 4680-4706. Google Scholar  P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations. Theory and Shape Optimization Monografie Matematyczne, 73 Birkhauser, 2012. doi: 978-3-0348-0366-3.  Google Scholar  P. Plotnikov, J. Sokolowski and A. Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains, 14th International IEEE/IFAC Conference on Methods and Models in Automation and Robotics MMAR'09 (2009), 4 pages. Google Scholar  S. Schmidt and V. Schulz, Shape derivatives for general objective functions and the incompressible Navier-Stokes equations, Control and Cybernetics, 39 (2010), 677-713. Google Scholar  J. Simon, Domain variation for drag in Stokes flow, in: Control Theory of Distributed Parameter Systems and Applications (Shanghai, 1990), Lecture Notes in Control and Inform. Sci. , 159, Springer, Berlin, (1991), 28-42. Google Scholar  T. Slawig, A formula for the derivative with respect to domain variations in Navier-Stokes flow based on an embedding domain method, SIAM J. Control Optim., 42 (2003), 495-512. Google Scholar  T. Slawig, An explicit formula for the derivative of a class of cost functionals with respect to domain variations in Stokes flow, SIAM J. Control Optim., 39 (2000), 141-158. Google Scholar

show all references

##### References:
  R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Google Scholar  H. Beirão da Veiga, Stationary motions and the incompressible limit for compressible viscous fluids, Houston J. Math., 13 (1987), 527-544. Google Scholar  H. Beirão da Veiga, An $L^p$-theory for the $n$-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys., 109 (1987), 229-248. Google Scholar  H. Beirão da Veiga, Existence results in Sobolev spaces for a transport equation, Ricerche Mat., 36 (1987), 173-184. Google Scholar  V. Berinde, Iterative Approximation of Fixed Points Lecture Notes in Mathematics 1912, Springer Verlag, 2007. Google Scholar  C. Brandenburg, F. Lindemann, M. Ulbrich and S. Ulbrich, Advanced numerical methods for PDE constrained optimization with application to optimal design in Navier Stokes flow, Constrained Optimization and Optimal Control for partial Differential Equations, in Series: Internat. Ser. Numer. Math. , Birkhäuser/Springer Basel AG, Basel, 160 (2012), 257-275. Google Scholar  E. Casas, An optimal control problem governed by the evolution Navier-Stokes equations. In S. S. Sritharan, editor, Optimal Control of Viscous Flows, SIAM, Philadelphia, (1998), 79-95. Google Scholar  R. Eymard, T. Gallouet, R. Herbin and J. Latche, A convergent finite element-finite volume scheme for the compressible Stokes problem; part Ⅱ -The isentropic case, Mathematics of Computation, 79 (2010), 649-675. Google Scholar  E. Feireisl, T. Karper and M. Pokorný, Mathematical Theory of Compressible Viscous Fluids, Birkhäuser, Basel, 2016. Google Scholar  T. Gallouet, R. Herbin and J. Latche, A convergent finite element-finite volume scheme for the compressible Stokes problem; part â… -The isothermal case, Mathematics of Computation, 78 (2009), 1333-1352. Google Scholar  D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001. Google Scholar  T. Kondoh, T. Matsumori and A. Kawamoto, Drag minimization and lift maximization in laminar flows via topology optimization employing simple objective function expressions based on body force integration, Struct. Multidiscip. Optim., 45 (2012), 693-701. Google Scholar  B. Mohammadi and O. Pironneau, Shape optimization in fluid mechanics, Ann. Rev. Fluid Mech., 36 (2004), 255-279. Google Scholar  B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids, 2$^{nd}$ edition, Oxford Univ. Press, Oxford, 2010. Google Scholar  S. Novo, Compressible Navier-Stokes model with inflow-outflow boundary conditions, J. Math. Fluid Mech., 7 (2005), 485-514. Google Scholar  A. Novotný, About steady transport equation. Ⅰ. $L^p$-approach in domains with smooth boundaries, Comment. Math. Univ. Carolin., 37 (1996), 43-89. Google Scholar  A. Novotný, About steady transport equation. Ⅱ. Schauder estimates in domains with smooth boundaries, Portugal. Math., 54 (1997), 317-333. Google Scholar  A. Novotný and M. Padula, Existence and uniqueness of stationary solutions for viscous compressible heat conductive fluid with large potential and small non-potential external forces, Sibirsk. Mat. Zh. , 34 (1993), 120-146 (in Russian). Google Scholar  A. Novotný and M. Padula, $L^p$-approach to steady flows of viscous compressible fluids in exterior domains, Arch. Ration. Mech. Anal., 126 (1994), 243-297. Google Scholar  A. Novotný and M. Padula, Physically reasonable solutions to steady compressible Navier-Stokes equations in $3D$-exterior domains $(v_{âˆž}\ne 0)$, Math. Ann., 308 (1997), 439-489. Google Scholar  A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Univ. Press, Oxford, 2004. Google Scholar  M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch. Ration. Mech. Anal., 97 (1987), 89-102. Google Scholar  P. I. Plotnikov, E. V. Ruban and J. Sokolowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations: well-posedness and sensitivity analysis, SIAM J. Math. Anal., 40 (2008), 1152-1200. Google Scholar  P. I. Plotnikov, E. V. Ruban and J. Sokolowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations, J. Math. Pures Appl., 92 (2009), 113-162. Google Scholar  P. Plotnikov and J. Sokolowski, Domain dependence of solutions to compressible Navier-Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), 1165-1197. Google Scholar  P. Plotnikov and J. Sokolowski, Shape derivative of drag functional, SIAM J. Control Optim., 48 (2010), 4680-4706. Google Scholar  P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations. Theory and Shape Optimization Monografie Matematyczne, 73 Birkhauser, 2012. doi: 978-3-0348-0366-3.  Google Scholar  P. Plotnikov, J. Sokolowski and A. Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains, 14th International IEEE/IFAC Conference on Methods and Models in Automation and Robotics MMAR'09 (2009), 4 pages. Google Scholar  S. Schmidt and V. Schulz, Shape derivatives for general objective functions and the incompressible Navier-Stokes equations, Control and Cybernetics, 39 (2010), 677-713. Google Scholar  J. Simon, Domain variation for drag in Stokes flow, in: Control Theory of Distributed Parameter Systems and Applications (Shanghai, 1990), Lecture Notes in Control and Inform. Sci. , 159, Springer, Berlin, (1991), 28-42. Google Scholar  T. Slawig, A formula for the derivative with respect to domain variations in Navier-Stokes flow based on an embedding domain method, SIAM J. Control Optim., 42 (2003), 495-512. Google Scholar  T. Slawig, An explicit formula for the derivative of a class of cost functionals with respect to domain variations in Stokes flow, SIAM J. Control Optim., 39 (2000), 141-158. Google Scholar On the left: the plot of $J$ versus number of steps; on the right: the final shape of the obstacle $\Gamma$ after minimization of the drag
  Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41  Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222  Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024  Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768  Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095  Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339  Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59  Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109  Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032  Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021163  Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465  Vladislav Balashov, Alexander Zlotnik. An energy dissipative semi-discrete finite-difference method on staggered meshes for the 3D compressible isothermal Navier–Stokes–Cahn–Hilliard equations. Journal of Computational Dynamics, 2020, 7 (2) : 291-312. doi: 10.3934/jcd.2020012  Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008  Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153  Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665  Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387  So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343  Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052  Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097  Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

2020 Impact Factor: 1.284