# American Institute of Mathematical Sciences

March  2018, 8(1): 277-313. doi: 10.3934/mcrf.2018012

## Water artificial circulation for eutrophication control

 1 Depto. Matemática Aplicada II, Universidade de Vigo, E.I. Telecomunicación, 36310 Vigo, Spain 2 Centro Universitario de la Defensa, Escuela Naval Militar, 36920 Marín, Spain

* Corresponding author

Received  April 2017 Revised  September 2017 Published  January 2018

This work analyzes, from a mathematical point of view, the artificial mixing of water -by means of several pairs collector/injector that set up a circulation pattern in the waterbody -in order to prevent the undesired effects of eutrophication. The environmental problem is formulated as a constrained optimal control problem of partial differential equations, where the state system is related to the velocity of water and to the concentrations of the different species involved in the eutrophication processes, and the cost function to be minimized represents the volume of recirculated water. In the main part of the work, the wellposedness of the problem and the existence of an optimal control is demonstrated. Finally, a complete numerical algorithm for its computation is presented, and some numerical results for a realistic problem are also given.

Citation: Aurea Martínez, Francisco J. Fernández, Lino J. Alvarez-Vázquez. Water artificial circulation for eutrophication control. Mathematical Control & Related Fields, 2018, 8 (1) : 277-313. doi: 10.3934/mcrf.2018012
##### References:

show all references

##### References:
Physical domain $\Omega$ for the numerical example, showing the control domain $\Omega_C$ (shaded area) and the four pumping groups connecting collectors $C^k$ with injectors $T^k$, for $k = 1, \ldots, 4$.
Comparison of the constraints on the five species (nutrient, phytoplankton, zooplankton, organic detritus and dissolved oxygen) for an uncontrolled case (dashed line) and for a controlled one (solid line), corresponding to 48 steps of time.
Concentrations of dissolved oxygen at final time with the four pumps at rest (up) and with medium power pumps (down).
Concentrations of organic detritus at final time with the four pumps at rest (up) and with medium power pumps (down).
Optimal control $\mathbf{g}_{opt}$ for the four groups (up), and mean concentrations of dissolved oxygen for $\mathbf{g}_{ref}$, $\mathbf{g} = 0$ and $\mathbf{g}_{opt}$ (down).
Concentration of dissolved oxygen at final time for the optimal control $\mathbf{g}_{opt}$.
Physical parameters for the numerical example.
 Parameters Values Units $\nu$ $1.5 \ 10^{-6}$ $m^2/s$ $\nu_{tur}$ $1.0 \ 10^{-2}$ $m^2$ $K_N$ $3.8 \ 10^{-2}$ $mg/l$ $K_F$ $2.0 \ 10^{-1}$ $mg\, C/l$ $K_{mf}$ $3.8 \ 10^{-7}$ $s^{-1}$ $K_{mz}$ $3.78 \ 10^{-7}$ $s^{-1}$ $K_r$ $3.8 \ 10^{-7}$ $s^{-1}$ $K_z$ $4.3 \ 10^{-6}$ $s^{-1}$ $K_{rd}$ $2.3 \ 10^{-5}$ $s^{-1}$ $\Theta$ $1.05$ - $\theta$ $24.0$ $^{\circ}C$ $\mu$ $1.5 \ 10^{-4}$ $s^{-1}$ $\varphi_1$ $30.0$ $m^{-1}$ $\varphi_2$ $0.0$ $m^{-1} / (mg\, C/l)$ $I_0$ $100.0$ $(Cal/m^2)/s$ $I_S$ $100.0$ $(Cal/m^2)/s$ $C_{fz}$ $1.1$ - $C_T$ $1.06$ - $\mu^i$ $1.0 \ 10^{-5}$ $m^2/s$
 Parameters Values Units $\nu$ $1.5 \ 10^{-6}$ $m^2/s$ $\nu_{tur}$ $1.0 \ 10^{-2}$ $m^2$ $K_N$ $3.8 \ 10^{-2}$ $mg/l$ $K_F$ $2.0 \ 10^{-1}$ $mg\, C/l$ $K_{mf}$ $3.8 \ 10^{-7}$ $s^{-1}$ $K_{mz}$ $3.78 \ 10^{-7}$ $s^{-1}$ $K_r$ $3.8 \ 10^{-7}$ $s^{-1}$ $K_z$ $4.3 \ 10^{-6}$ $s^{-1}$ $K_{rd}$ $2.3 \ 10^{-5}$ $s^{-1}$ $\Theta$ $1.05$ - $\theta$ $24.0$ $^{\circ}C$ $\mu$ $1.5 \ 10^{-4}$ $s^{-1}$ $\varphi_1$ $30.0$ $m^{-1}$ $\varphi_2$ $0.0$ $m^{-1} / (mg\, C/l)$ $I_0$ $100.0$ $(Cal/m^2)/s$ $I_S$ $100.0$ $(Cal/m^2)/s$ $C_{fz}$ $1.1$ - $C_T$ $1.06$ - $\mu^i$ $1.0 \ 10^{-5}$ $m^2/s$
 [1] Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013 [2] Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control & Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020 [3] Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521 [4] Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020 [5] Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879 [6] Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036 [7] Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 [8] Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455 [9] Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481 [10] Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 [11] Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 [12] Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 [13] Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 [14] Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032 [15] Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 [16] Runzhang Xu. Preface: Special issue on advances in partial differential equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : i-i. doi: 10.3934/dcdss.2021137 [17] Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345 [18] Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 [19] Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117 [20] Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001

2020 Impact Factor: 1.284