- Previous Article
- MCRF Home
- This Issue
-
Next Article
Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations
Operator-valued backward stochastic Lyapunov equations in infinite dimensions, and its application
School of Mathematics, Sichuan University, Chengdu 610064, China |
We establish the well-posedness of operator-valued backward stochastic Lyapunov equations in infinite dimensions, in the sense of $ V $-transposition solution and of relaxed transposition solution. As an application, we obtain a Pontryagin-type maximum principle for the optimal control of controlled stochastic evolution equations.
References:
[1] |
A. M. Bruckner, J. B. Bruckner and B. S. Thomson,
Real Analysis, Prentice Hall (Pearson), Upper Saddle River, 1997. |
[2] |
G. Da Prato and J. Zabczyk,
Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. |
[3] |
K. Du and Q. Meng,
A maximum principle for optimal control of stochastic evolution equations, SIAM J. Control Optim., 51 (2013), 4343-4362.
|
[4] |
M. Fuhrman, Y. Hu and G. Tessitore,
Stochastic maximum principle for optimal control of SPDEs, Appl. Math. Optim., 68 (2013), 181-217.
|
[5] |
G. Guatteri and G. Tessitore,
On the backward stochastic Riccati equation in infinite dimensions, SIAM J. Control Optim., 44 (2005), 159-194.
|
[6] |
G. Guatteri and G. Tessitore,
Well posedness of operator valued backward stochastic Riccati equations in infinite dimensional spaces, SIAM J. Control Optim., 52 (2014), 3776-3806.
|
[7] |
K. Itô, Introduction to Probability Theory, Cambridge University Press, Cambridge, 1984. |
[8] |
R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary Theory, Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, 1997. |
[9] |
Q. Lü, Second order necessary conditions for optimal control problems of stochastic evolution equations, Proceedings of the 35th Chinese Control Conference, Chengdu, China, (2016), 2620-2625. |
[10] |
Q. Lü, J. Yong and X. Zhang,
Representation of Itô integrals by Lebesgue/Bochner integrals, J. Eur. Math. Soc, 14 (2012), 1795-1823.
|
[11] |
Q. Lü, H. Zhang and X. Zhang, Second order optimality conditions for optimal control problems of stochastic evolution equations, Preprint. |
[12] |
Q. Lü and X. Zhang,
Well-posedness of backward stochastic differential equations with general filtration, J. Differential Equations, 254 (2013), 3200-3227.
|
[13] |
Q. Lü and X. Zhang,
General Pontryagin-type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions, Springer Briefs in Mathematics, Springer, New York, 2014. (See also http://arXiv.org/abs/1204.3275) |
[14] |
Q. Lü and X. Zhang,
Transposition method for backward stochastic evolution equations revisited, and its application, Math. Control Relat. Fields., 5 (2015), 529-555.
|
[15] |
Q. Lü and X. Zhang, Optimal feedback for stochastic linear quadratic control and backward stochastic Riccati equations in infinite simensions, Preprint. |
[16] |
V. A. Rohlin, On the fundamental ideas of measure theory, in Amer. Math. Soc. Translation, 1952 (1952), 55 pp. |
[17] |
J. M. A. M. van Neerven, M. C. Veraar and L. Weis,
Stochastic integration in UMD Banach spaces, Ann. Probab., 35 (2007), 1438-1478.
|
[18] |
J. M. A. M. van Neerven, γ-radonifying operators—a survey, The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, 1-61. Proc. Centre Math. Appl. Austral. Nat. Univ., 44, Austral. Nat. Univ., Canberra, 2010. |
show all references
References:
[1] |
A. M. Bruckner, J. B. Bruckner and B. S. Thomson,
Real Analysis, Prentice Hall (Pearson), Upper Saddle River, 1997. |
[2] |
G. Da Prato and J. Zabczyk,
Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. |
[3] |
K. Du and Q. Meng,
A maximum principle for optimal control of stochastic evolution equations, SIAM J. Control Optim., 51 (2013), 4343-4362.
|
[4] |
M. Fuhrman, Y. Hu and G. Tessitore,
Stochastic maximum principle for optimal control of SPDEs, Appl. Math. Optim., 68 (2013), 181-217.
|
[5] |
G. Guatteri and G. Tessitore,
On the backward stochastic Riccati equation in infinite dimensions, SIAM J. Control Optim., 44 (2005), 159-194.
|
[6] |
G. Guatteri and G. Tessitore,
Well posedness of operator valued backward stochastic Riccati equations in infinite dimensional spaces, SIAM J. Control Optim., 52 (2014), 3776-3806.
|
[7] |
K. Itô, Introduction to Probability Theory, Cambridge University Press, Cambridge, 1984. |
[8] |
R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary Theory, Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, 1997. |
[9] |
Q. Lü, Second order necessary conditions for optimal control problems of stochastic evolution equations, Proceedings of the 35th Chinese Control Conference, Chengdu, China, (2016), 2620-2625. |
[10] |
Q. Lü, J. Yong and X. Zhang,
Representation of Itô integrals by Lebesgue/Bochner integrals, J. Eur. Math. Soc, 14 (2012), 1795-1823.
|
[11] |
Q. Lü, H. Zhang and X. Zhang, Second order optimality conditions for optimal control problems of stochastic evolution equations, Preprint. |
[12] |
Q. Lü and X. Zhang,
Well-posedness of backward stochastic differential equations with general filtration, J. Differential Equations, 254 (2013), 3200-3227.
|
[13] |
Q. Lü and X. Zhang,
General Pontryagin-type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions, Springer Briefs in Mathematics, Springer, New York, 2014. (See also http://arXiv.org/abs/1204.3275) |
[14] |
Q. Lü and X. Zhang,
Transposition method for backward stochastic evolution equations revisited, and its application, Math. Control Relat. Fields., 5 (2015), 529-555.
|
[15] |
Q. Lü and X. Zhang, Optimal feedback for stochastic linear quadratic control and backward stochastic Riccati equations in infinite simensions, Preprint. |
[16] |
V. A. Rohlin, On the fundamental ideas of measure theory, in Amer. Math. Soc. Translation, 1952 (1952), 55 pp. |
[17] |
J. M. A. M. van Neerven, M. C. Veraar and L. Weis,
Stochastic integration in UMD Banach spaces, Ann. Probab., 35 (2007), 1438-1478.
|
[18] |
J. M. A. M. van Neerven, γ-radonifying operators—a survey, The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, 1-61. Proc. Centre Math. Appl. Austral. Nat. Univ., 44, Austral. Nat. Univ., Canberra, 2010. |
[1] |
Qi Lü, Xu Zhang. Transposition method for backward stochastic evolution equations revisited, and its application. Mathematical Control and Related Fields, 2015, 5 (3) : 529-555. doi: 10.3934/mcrf.2015.5.529 |
[2] |
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017 |
[3] |
Chiun-Chuan Chen, Li-Chang Hung, Chen-Chih Lai. An N-barrier maximum principle for autonomous systems of $n$ species and its application to problems arising from population dynamics. Communications on Pure and Applied Analysis, 2019, 18 (1) : 33-50. doi: 10.3934/cpaa.2019003 |
[4] |
Fuzhi Li, Dongmei Xu, Jiali Yu. Regular measurable backward compact random attractor for $ g $-Navier-Stokes equation. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3137-3157. doi: 10.3934/cpaa.2020136 |
[5] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405 |
[6] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3351-3386. doi: 10.3934/dcdss.2020440 |
[7] |
Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086 |
[8] |
Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021059 |
[9] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[10] |
Ichrak Bouacida, Mourad Kerboua, Sami Segni. Controllability results for Sobolev type $ \psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022028 |
[11] |
Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162 |
[12] |
Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 |
[13] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations and Control Theory, 2022, 11 (3) : 621-633. doi: 10.3934/eect.2021017 |
[14] |
Niklas Sapountzoglou, Aleksandra Zimmermann. Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2341-2376. doi: 10.3934/dcds.2020367 |
[15] |
Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022081 |
[16] |
Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14 (4) : 555-572. doi: 10.3934/amc.2020029 |
[17] |
Liu Liu, Justyna Jarczyk, Witold Jarczyk, Weinian Zhang. Iterative roots of type $ \mathcal {T}_2 $. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022082 |
[18] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[19] |
Sel Ly, Nicolas Privault. $ G $-expectation approach to stochastic ordering. Frontiers of Mathematical Finance, , () : -. doi: 10.3934/fmf.2021012 |
[20] |
Koya Nishimura. Global existence for the Boltzmann equation in $ L^r_v L^\infty_t L^\infty_x $ spaces. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1769-1782. doi: 10.3934/cpaa.2019083 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]