-
Previous Article
Numerical study of polynomial feedback laws for a bilinear control problem
- MCRF Home
- This Issue
-
Next Article
Value function for regional control problems via dynamic programming and Pontryagin maximum principle
Necessary conditions for infinite horizon optimal control problems with state constraints
1. | Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 1 - 00133 Roma, Italy |
2. | IMJ-PRG, UMR 7586 CNRS, Sorbonne Université, case 247, 4 place Jussieu, 75252 Paris, France |
Partial and full sensitivity relations are obtained for nonauto-nomous optimal control problems with infinite horizon subject to state constraints, assuming the associated value function to be locally Lipschitz in the state. Sufficient structural conditions are given to ensure such a Lipschitz regularity in presence of a positive discount factor, as it is typical of macroeconomics models.
References:
[1] |
K. Arrow and M. Kurz,
Optimal growth with irreversible investment in a Ramsey model, Econometrica, 38 (1970), 331-344.
doi: 10.2307/1913014. |
[2] |
S. M. Aseev,
On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems, Tr. Inst. Mat. Mekh., 19 (2013), 15-24.
|
[3] |
S. M. Aseev and V. M. Veliov,
Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions, Tr. Inst. Mat. Mekh., 20 (2014), 41-57.
|
[4] |
J.-P. Aubin and H. Frankowska, Set-valued Analysis, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009.
doi: 10.1007/978-0-8176-4848-0. |
[5] |
V. Basco and H. Frankowska, Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints, (submitted). |
[6] |
J. P. Bénassy, Macroeconomic Theory, Oxford University Press, 2010. |
[7] |
L. M. Benveniste and J. A. Scheinkman,
Duality theory for dynamic optimization models of economics: the continuous time case, J. Econom. Theory, 27 (1982), 1-19.
doi: 10.1016/0022-0531(82)90012-6. |
[8] |
P. Bettiol, H. Frankowska and R. B. Vinter,
Improved sensitivity relations in state constrained optimal control, Appl. Math. Optim., 71 (2015), 353-377.
doi: 10.1007/s00245-014-9260-6. |
[9] |
O. J. Blanchard and S. Fischer, Lectures on Macroeconomics, MIT press, 1989. |
[10] |
P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkhäuser Boston, Inc., Boston, MA, 2004. |
[11] |
A. Cernea and H. Frankowska,
A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., 44 (2005), 673-703.
doi: 10.1137/S0363012903430585. |
[12] |
H. Frankowska and M. Mazzola,
On relations of the adjoint state to the value function for optimal control problems with state constraints, Nonlinear Differential Equations Appl., 20 (2013), 361-383.
doi: 10.1007/s00030-012-0183-0. |
[13] |
P. Loreti and M. E. Tessitore,
Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations, J. Math. Systems Estim. Control, 4 (1994), 467-483.
|
[14] |
F. P. Ramsey,
A mathematical theory of saving, The Economic Journal, 38 (1928), 543-559.
doi: 10.2307/2224098. |
[15] |
R. T. Rockafellar and R. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[16] |
A. Seierstad,
Necessary conditions for nonsmooth, infinite-horizon, optimal control problems, J. Optim. Theory Appl., 103 (1999), 201-229.
doi: 10.1023/A:1021733719020. |
[17] |
A. Seierstad and K. Sydsæter, Optimal Control Theory with Economic Applications, North-Holland Publishing Co., Amsterdam, 1987. |
[18] |
G. Sorger,
On the long-run distribution of capital in the Ramsey model, J. Econom. Theory, 105 (2002), 226-243.
doi: 10.1006/jeth.2001.2841. |
[19] |
R. Vinter, Optimal Control, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010.
doi: 10.1007/978-0-8176-8086-2. |
show all references
References:
[1] |
K. Arrow and M. Kurz,
Optimal growth with irreversible investment in a Ramsey model, Econometrica, 38 (1970), 331-344.
doi: 10.2307/1913014. |
[2] |
S. M. Aseev,
On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems, Tr. Inst. Mat. Mekh., 19 (2013), 15-24.
|
[3] |
S. M. Aseev and V. M. Veliov,
Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions, Tr. Inst. Mat. Mekh., 20 (2014), 41-57.
|
[4] |
J.-P. Aubin and H. Frankowska, Set-valued Analysis, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009.
doi: 10.1007/978-0-8176-4848-0. |
[5] |
V. Basco and H. Frankowska, Lipschitz continuity of the value function for the infinite horizon optimal control problem under state constraints, (submitted). |
[6] |
J. P. Bénassy, Macroeconomic Theory, Oxford University Press, 2010. |
[7] |
L. M. Benveniste and J. A. Scheinkman,
Duality theory for dynamic optimization models of economics: the continuous time case, J. Econom. Theory, 27 (1982), 1-19.
doi: 10.1016/0022-0531(82)90012-6. |
[8] |
P. Bettiol, H. Frankowska and R. B. Vinter,
Improved sensitivity relations in state constrained optimal control, Appl. Math. Optim., 71 (2015), 353-377.
doi: 10.1007/s00245-014-9260-6. |
[9] |
O. J. Blanchard and S. Fischer, Lectures on Macroeconomics, MIT press, 1989. |
[10] |
P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkhäuser Boston, Inc., Boston, MA, 2004. |
[11] |
A. Cernea and H. Frankowska,
A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J. Control Optim., 44 (2005), 673-703.
doi: 10.1137/S0363012903430585. |
[12] |
H. Frankowska and M. Mazzola,
On relations of the adjoint state to the value function for optimal control problems with state constraints, Nonlinear Differential Equations Appl., 20 (2013), 361-383.
doi: 10.1007/s00030-012-0183-0. |
[13] |
P. Loreti and M. E. Tessitore,
Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations, J. Math. Systems Estim. Control, 4 (1994), 467-483.
|
[14] |
F. P. Ramsey,
A mathematical theory of saving, The Economic Journal, 38 (1928), 543-559.
doi: 10.2307/2224098. |
[15] |
R. T. Rockafellar and R. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[16] |
A. Seierstad,
Necessary conditions for nonsmooth, infinite-horizon, optimal control problems, J. Optim. Theory Appl., 103 (1999), 201-229.
doi: 10.1023/A:1021733719020. |
[17] |
A. Seierstad and K. Sydsæter, Optimal Control Theory with Economic Applications, North-Holland Publishing Co., Amsterdam, 1987. |
[18] |
G. Sorger,
On the long-run distribution of capital in the Ramsey model, J. Econom. Theory, 105 (2002), 226-243.
doi: 10.1006/jeth.2001.2841. |
[19] |
R. Vinter, Optimal Control, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2010.
doi: 10.1007/978-0-8176-8086-2. |
[1] |
Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241 |
[2] |
Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443 |
[3] |
Naïla Hayek. Infinite-horizon multiobjective optimal control problems for bounded processes. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1121-1141. doi: 10.3934/dcdss.2018064 |
[4] |
H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77 |
[5] |
Ariela Briani, Hasnaa Zidani. Characterization of the value function of final state constrained control problems with BV trajectories. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1567-1587. doi: 10.3934/cpaa.2011.10.1567 |
[6] |
Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401 |
[7] |
Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007 |
[8] |
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235 |
[9] |
Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 |
[10] |
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3821-3838. doi: 10.3934/dcdsb.2017192 |
[11] |
Alexander Tarasyev, Anastasia Usova. Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 389-406. doi: 10.3934/naco.2013.3.389 |
[12] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 |
[13] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[14] |
Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial and Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247 |
[15] |
Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial and Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503 |
[16] |
Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505 |
[17] |
Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations and Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024 |
[18] |
Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174 |
[19] |
Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082 |
[20] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]