We consider the infinite dimensional linear control system described by the population dynamics model of Lotka-McKendrick with spatial diffusion. Considering control functions localized with respect to the spatial variable but active for all ages, we prove that the whole population can be steered to zero in any positive time. The main novelty we bring is that, unlike the existing results in the literature, we can also control the population of ages very close to 0. Another novelty brought in is the employed methodology: as far as we know, the present work is the first one remarking that the null controllability of the considered system can be obtained by using the Lebeau-Robbiano strategy, originally developed for the null-controllability of the heat equation.
Citation: |
B. Ainseba
, Exact and approximate controllability of the age and space population dynamics structured model, Journal of Mathematical Analysis and Applications, 275 (2002)
, 562-574.
doi: 10.1016/S0022-247X(02)00238-X.![]() ![]() ![]() |
|
B. Ainseba and S. Aniţa, Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differential Equations, (2004), 11 pp.
![]() ![]() |
|
B. Ainseba
and M. Iannelli
, Exact controllability of a nonlinear population-dynamics problem, Differential and Integral Equations, 16 (2003)
, 1369-1384.
![]() |
|
B. Ainseba
and M. Langlais
, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl., 248 (2000)
, 455-474.
doi: 10.1006/jmaa.2000.6921.![]() ![]() ![]() |
|
S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Theory and Applications, Kluwer Academic Publishers, Dordrecht, 2000.
doi: 10.1007/978-94-015-9436-3.![]() ![]() ![]() |
|
V. Barbu
, M. Iannelli
and M. Martcheva
, On the controllability of the Lotka-McKendrick model of population dynamics, J. Math. Anal. Appl., 253 (2001)
, 142-165.
doi: 10.1006/jmaa.2000.7075.![]() ![]() ![]() |
|
K. Beauchard
, Null controllability of Kolmogorov-type equations, Math. Control Signals Systems, 26 (2014)
, 145-176.
doi: 10.1007/s00498-013-0110-x.![]() ![]() ![]() |
|
K. Beauchard
and K. Pravda-Starov
, Null-controllability of hypoelliptic quadratic differential equations, J. Éc. polytech. Math., 5 (2018)
, 1-43.
![]() ![]() |
|
B. Z. Guo
and W. L. Chan
, On the semigroup for age dependent population dynamics with spatial diffusion, J. Math. Anal. Appl., 184 (1994)
, 190-199.
doi: 10.1006/jmaa.1994.1193.![]() ![]() ![]() |
|
N. Hegoburu
, P. Magal
and M. Tucsnak
, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018)
, 723-750.
doi: 10.1137/16M1103087.![]() ![]() ![]() |
|
W. Huyer
, Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion, Semigroup Forum, 49 (1994)
, 99-114.
doi: 10.1007/BF02573475.![]() ![]() ![]() |
|
H. Inaba, Age-structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017.
doi: 10.1007/978-981-10-0188-8.![]() ![]() ![]() |
|
D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), Chicago Lectures in Math., (1999), 223-239.
![]() ![]() |
|
F. Kappel
and K. Zhang
, Approximation of linear age-structured population models using Legendre polynomials, J. Math. Anal. Appl., 180 (1993)
, 518-549.
doi: 10.1006/jmaa.1993.1414.![]() ![]() ![]() |
|
O. Kavian
and O. Traore
, Approximate controllability by birth control for a nonlinear population dynamics model, ESAIM Control Optim. Calc. Var., 17 (2011)
, 1198-1213.
doi: 10.1051/cocv/2010043.![]() ![]() ![]() |
|
G. Lebeau
and L. Robbiano
, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995)
, 335-356.
doi: 10.1080/03605309508821097.![]() ![]() ![]() |
|
G. Lebeau
and L. Robbiano
, Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997)
, 465-491.
doi: 10.1080/03605309508821097.![]() ![]() ![]() |
|
Y. Netrusov
and Y. Safarov
, Weyl asymptotic formula for the Laplacian on domains with rough boundaries, Comm. Math. Phys., 253 (2005)
, 481-509.
doi: 10.1007/s00220-004-1158-8.![]() ![]() ![]() |
|
T. I. Seidman
, How violent are fast controls. Ⅲ, J. Math. Anal. Appl., 339 (2008)
, 461-468.
doi: 10.1016/j.jmaa.2007.07.008.![]() ![]() ![]() |
|
J. Song
, J. Y. Yu
, X. Z. Zhang
, S. J. Hu
, Z. X. Zhao
, J. Q. Liu
and D. X. Feng
, Spectral properties of population operator and asymptotic behaviour of population semigroup, Acta Math. Sci. (English Ed.), 2 (1982)
, 139-148.
![]() |
|
G. Tenenbaum
and M. Tucsnak
, On the null-controllability of diffusion equations, ESAIM Control Optim. Calc. Var., 17 (2011)
, 1088-1100.
doi: 10.1051/cocv/2010035.![]() ![]() ![]() |
|
O. Traore, Null controllability of a nonlinear population dynamics problem Int. J. Math. Math. Sci., (2006), Art. ID 49279, 20 pp.
doi: 10.1155/IJMMS/2006/49279.![]() ![]() ![]() |
|
J. Zabczyk
, Remarks on the algebraic Riccati equation in Hilbert space, Appl. Math. Optim., 2 (1975/76)
, 251-258.
doi: 10.1007/BF01464270.![]() ![]() ![]() |
The spectrum of the free diffusion operator