The present paper is devoted to the study of the well-posedness of BSDEs with mean reflection whenever the generator has quadratic growth in the $z$ argument. This work is the sequel of [6] in which a notion of BSDEs with mean reflection is developed to tackle the super-hedging problem under running risk management constraints. By the contraction mapping argument, we first prove that the quadratic BSDE with mean reflection admits a unique deterministic flat local solution on a small time interval whenever the terminal value is bounded. Moreover, we build the global solution on the whole time interval by stitching local solutions when the generator is uniformly bounded with respect to the $y$ argument.
Citation: |
S. Ankirchner
, P. Imkeller
and G. dos Reis
, Classical and variational differentiability of BSDEs with quadratic growth, Electron. J. Probab, 12 (2007)
, 1418-1453.
doi: 10.1214/EJP.v12-462.![]() ![]() ![]() |
|
P. Barrieu
and N. El Karoui
, Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs, Ann. Probab., 41 (2013)
, 1831-1863.
doi: 10.1214/12-AOP743.![]() ![]() ![]() |
|
B. Bouchard
, R. Elie
and A. Réveillac
, BSDEs with weak terminal condition, Ann. Probab., 43 (2015)
, 572-604.
doi: 10.1214/14-AOP913.![]() ![]() ![]() |
|
P. Briand, P. E. Chaudru de Raynal, A. Guillin and C. Labart, Particles systems and numerical schemes for mean reflected stochastic differential equations, preprint, arXiv: 1612.06886
![]() |
|
P. Briand
and F. Confortola
, BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Process. Appl., 118 (2008)
, 818-838.
doi: 10.1016/j.spa.2007.06.006.![]() ![]() ![]() |
|
P. Briand, R. Elie and Y. Hu, BSDEs with mean reflection, Ann. Appl. Probab., 28 (2018), 482–510, arXiv: 1605.06301
doi: 10.1214/17-AAP1310.![]() ![]() ![]() |
|
P. Briand
and R. Elie
, A simple constructive approach to quadratic BSDEs with or without delay, Stochastic Process. Appl., 123 (2013)
, 2921-2939.
doi: 10.1016/j.spa.2013.02.013.![]() ![]() ![]() |
|
P. Briand
and Y. Hu
, BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields, 136 (2006)
, 604-618.
doi: 10.1007/s00440-006-0497-0.![]() ![]() ![]() |
|
P. Briand
and Y. Hu
, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields, 141 (2008)
, 543-567.
doi: 10.1007/s00440-007-0093-y.![]() ![]() ![]() |
|
R. Buckdahn
and Y. Hu
, Pricing of American contingent claims with jump stock price and constrained portfolios, Math. Oper. Res., 23 (1998)
, 177-203.
doi: 10.1287/moor.23.1.177.![]() ![]() ![]() |
|
R. Buckdahn
and Y. Hu
, Hedging contingent claims for a large investor in an incomplete market, Adv. in Appl. Probab., 30 (1998)
, 239-255.
doi: 10.1239/aap/1035228002.![]() ![]() ![]() |
|
J. F. Chassagneux
, R. Elie
and I. Kharroubi
, A note on existence and uniqueness for solutions of multidimensional reflected BSDEs, Electron. Commun. Probab., 16 (2011)
, 120-128.
doi: 10.1214/ECP.v16-1614.![]() ![]() ![]() |
|
P. Cheridito
and K. Nam
, BSDEs with terminal conditions that have bounded Malliavin derivative, J. Funct. Anal., 266 (2014)
, 1257-1285.
doi: 10.1016/j.jfa.2013.12.004.![]() ![]() ![]() |
|
P. Cheridito
and K. Nam
, Multidimensional quadratic and subquadratic BSDEs with special structure, Stochastics, 87 (2015)
, 871-884.
doi: 10.1080/17442508.2015.1013959.![]() ![]() ![]() |
|
J. Cvitanić
and I. Karatzas
, Backward stochastic differential equations with reflection and Dynkin games, Ann. Probab., 24 (1996)
, 2024-2056.
doi: 10.1214/aop/1041903216.![]() ![]() ![]() |
|
J. Cvitanić
, I. Karatzas
and H. M. Soner
, Backward stochastic differential equations with constraints on the gains-process, Ann. Probab., 26 (1998)
, 1522-1551.
doi: 10.1214/aop/1022855872.![]() ![]() ![]() |
|
N. El Karoui
, C. Kapoudjian
, E. Pardoux
, S. Peng
and M. C. Quenez
, Reflected solutions of backward SDE's, and related obstacle problems for PDE's, Ann. Probab., 25 (1997)
, 702-737.
doi: 10.1214/aop/1024404416.![]() ![]() ![]() |
|
N. El Karoui, E. Pardoux and M. C. Quenez, Reflected backward SDEs and American options,
in Numerical Methods in Finance (eds. L. C. G. Rogers and D. Talay), Cambridge Univ. Press,
13 (1997), 215–231.
![]() ![]() |
|
N. El Karoui
, S. Peng
and M. C. Quenez
, Backward stochastic differential equations in finance, Math. Finance, 7 (1997)
, 1-71.
doi: 10.1111/1467-9965.00022.![]() ![]() ![]() |
|
C. Frei
and G. dos Reis
, A financial market with interatcting investors: Does an equilibrium exist?, Math. Financ. Econ., 4 (2011)
, 161-182.
doi: 10.1007/s11579-011-0039-0.![]() ![]() ![]() |
|
S. Hamadene
and M. Jeanblanc
, On the starting and stopping problem: Application in reversible investments, Math. Oper. Res., 32 (2007)
, 182-192.
doi: 10.1287/moor.1060.0228.![]() ![]() ![]() |
|
S. Hamadene
and J. Zhang
, Switching problem and related system of reflected backward SDEs, Stochastic Process. Appl., 120 (2010)
, 403-426.
doi: 10.1016/j.spa.2010.01.003.![]() ![]() ![]() |
|
J. Harter and A. Richou, A stability approach for solving multidimensional quadratic BSDEs, preprint, arXiv: 1606.08627
![]() |
|
Y. Hu
, P. Imkeller
and M. Müller
, Utility maximization in incomplete markets, Ann. Appl. Probab., 15 (2005)
, 1691-1712.
doi: 10.1214/105051605000000188.![]() ![]() ![]() |
|
Y. Hu
and S. Tang
, Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010)
, 89-121.
doi: 10.1007/s00440-009-0202-1.![]() ![]() ![]() |
|
Y. Hu
and S. Tang
, Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl., 126 (2016)
, 1066-1086.
doi: 10.1016/j.spa.2015.10.011.![]() ![]() ![]() |
|
N. Kazamaki,
Continuous Exponential Martingales and BMO, Springer-Verlag, Berlin, 1994.
doi: 10.1007/BFb0073585.![]() ![]() ![]() |
|
M. Kobylanski
, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28 (2000)
, 558-602.
doi: 10.1214/aop/1019160253.![]() ![]() ![]() |
|
M.-A. Morlais
, Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem, Finance Stoch., 13 (2009)
, 121-150.
doi: 10.1007/s00780-008-0079-3.![]() ![]() ![]() |
|
D. Nualart,
The Malliavin Calculus and Related Topics, 2$^{nd}$ edition, Springer, Berlin, 2006.
doi: 10.1007/3-540-28329-3.![]() ![]() ![]() |
|
E. Pardoux
and S. Peng
, Adapted solution of a backward stochastic differential equation, Systems Control Lett., 14 (1990)
, 55-61.
doi: 10.1016/0167-6911(90)90082-6.![]() ![]() ![]() |
|
S. Peng
and M. Xu
, Reflected BSDE with a constraint and its applications in an incomplete market, Bernoulli, 16 (2010)
, 614-640.
doi: 10.3150/09-BEJ227.![]() ![]() ![]() |
|
R. Tevzadze
, Solvability of backward stochastic differential equations with quadratic growth, Stochastic Process. Appl., 118 (2008)
, 503-515.
doi: 10.1016/j.spa.2007.05.009.![]() ![]() ![]() |
|
H. Xing and G. Zitkovic, A class of globally solvable Markovian quadratic BSDE systems and
applications, Ann. Probab., 46 (2018), 491–550, arXiv: 1603.00217
doi: 10.1214/17-AOP1190.![]() ![]() ![]() |