In this work controlled systems of semilinear parabolic equations are considered. Only one control is acting in both equations and it is distributed in a subdomain. Local feedback stabilization is studied. The approach is based on approximate controllability for the linearized system and the use of an appropriate norm obtained from a Lyapunov equation. Applications to reaction-diffusion systems are discussed.
Citation: |
F. Ammar Khodja
, A. Benabdallah
, C. Dupaix
and I. Kostin
, Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim., 42 (2003)
, 1661-1680.
doi: 10.1137/S0363012902417826.![]() ![]() ![]() |
|
V. Barbu
and G. Wang
, Feedback stabilization of semilinear heat equations, Abstr. Appl. Anal., 12 (2003)
, 697-714.
doi: 10.1155/S1085337503212100.![]() ![]() ![]() |
|
V. Barbu
and G. Wang
, Internal stabilization of semilinear parabolic systems, J. Math. Anal. Appl., 285 (2003)
, 387-407.
doi: 10.1016/S0022-247X(03)00405-0.![]() ![]() ![]() |
|
V. Barbu,
Partial Differential Equations and Boundary Value Problems, Dordrecht: Kluwer Academic Publishers, 1998.
doi: 10.1007/978-94-015-9117-1.![]() ![]() ![]() |
|
A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter,
Representation and Control of Infinite Dimensional Systems. Volume I. Boston: Birkhäuser, 1992.
![]() ![]() |
|
J.-M. Coron
, Controllability and nonlinearity, ESAIM, Proc., 22 (2008)
, 21-39.
doi: 10.1051/proc:072203.![]() ![]() ![]() |
|
J.-M. Coron
, S. Guerrero
and L. Rosier
, Null controllability of a parabolic system with a cubic
coupling term, SIAM J. Control Optim., 48 (2010)
, 5629-5653.
doi: 10.1137/100784539.![]() ![]() ![]() |
|
J.-M. Coron
and J.-P. Guilleron
, Control of three heat equations coupled with two cubic
nonlinearities, SIAM J. Control Optim., 55 (2017)
, 989-1019.
doi: 10.1137/15M1041201.![]() ![]() ![]() |
|
A. V. Fursikov and O. Yu. Imanuvilov,
Controllability of Evolution Equations, Seoul: Seoul National Univ., 1996.
![]() ![]() |
|
C. Lefter
, Feedback stabilization of 2D Navier-Stokes equations with Navier slip boundary
conditions, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 70 (2009)
, 553-562.
doi: 10.1016/j.na.2007.12.026.![]() ![]() ![]() |
|
C.-G. Lefter
, Feedback stabilization of magnetohydrodynamic equations, SIAM J. Control Optim., 49 (2011)
, 963-983.
doi: 10.1137/070697124.![]() ![]() ![]() |
|
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |