In this paper, we consider the stability of a laminated beam equation, derived by Liu, Trogdon, and Yong [6], subject to viscous or Kelvin-Voigt damping. The model is a coupled system of two wave equations and one Euler-Bernoulli beam equation, which describes the longitudinal motion of the top and bottom layers of the beam and the transverse motion of the beam. We first show that the system is unstable if one damping is only imposed on the beam equation. On the other hand, it is easy to see that the system is exponentially stable if direct damping are imposed on all three equations. Hence, we investigate the system stability when two of the three equations are directly damped. There are a total of seven cases from the combination of damping locations and types. Polynomial stability of different orders and their optimality are proved. Several interesting properties are revealed.
Citation: |
A. A. Allen
and S. W. Hansen
, Analyticity of a multilayer Mead-Markus plate, Nonliear Anal., 71 (2009)
, e1835-e1842.
doi: 10.1016/j.na.2009.02.063.![]() ![]() ![]() |
|
A. A. Allen
and S. W. Hansen
, Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam, Discrete Contin. Dyn. Syst. Ser. B., 14 (2010)
, 1279-1292.
doi: 10.3934/dcdsb.2010.14.1279.![]() ![]() ![]() |
|
A. Borichev
and Y. Tomilov
, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010)
, 455-478.
doi: 10.1007/s00208-009-0439-0.![]() ![]() ![]() |
|
S. W. Hansen and Z. Liu, Analyticity of semigroup associated with a laminated composite
beam, Control of Distributed Parameter and Stochastic Systems (Hangzhou, 1998), Kluwer
Acad. Publ., Boston, MA, 1999, 47–54.
![]() ![]() |
|
S. W. Hansen
and R. Spies
, Structural damping in a laminated beam due to interfacial slip, J. Sound and Vibration, 204 (1997)
, 183-202.
doi: 10.1006/jsvi.1996.0913.![]() ![]() |
|
Z. Liu
, S. A. Trogdon
and J. Yong
, Modeling and analysis of a laminated beam, Math. Comput. Modeling, 30 (1999)
, 149-167.
doi: 10.1016/S0895-7177(99)00122-3.![]() ![]() ![]() |
|
Z. Liu and S. Zheng,
Semigroup Associated with Dissipative System, Res. Notes Math., Vol 394, Chapman & Hall/CRC, Boca Raton, 1999.
![]() ![]() |
|
D. J. Mead
and S. Markus
, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibr., 10 (1969)
, 163-175.
doi: 10.1016/0022-460X(69)90193-X.![]() ![]() |
|
A. Özkan Özer
and S. W. Hansen
, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evol. Equ. Control Theorey, 2 (2013)
, 695-710.
doi: 10.3934/eect.2013.2.695.![]() ![]() ![]() |
|
Y. V. K. S Rao
and B. C. Nakra
, Vibrations of unsymmetrical sanwich beams and plates with viscoelastic cores, J. Sound Vibr., 34 (1974)
, 309-326.
![]() |
|
C. A. Raposo
, Exponential stability of a structure with interfacial slip and frictional damping, Applied Math. Letter, 53 (2016)
, 85-91.
doi: 10.1016/j.aml.2015.10.005.![]() ![]() ![]() |
|
J. M. Wang
, G. Q. Xu
and S. P. Yung
, Stabilization of laminated beams with structural damping by boundary feedback controls, SIAM Control Optim., 44 (2005)
, 1575-1597.
doi: 10.1137/040610003.![]() ![]() ![]() |
|
M. J. Yan
and E. H. Dowell
, Governing equations for vibratory constrained-layer damping sandwich plates and beams, J. Appl. Mech., 39 (1972)
, 1041-1046.
![]() |