September & December  2018, 8(3&4): 1051-1079. doi: 10.3934/mcrf.2018045

Time-inconsistent recursive zero-sum stochastic differential games

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

2. 

School of Mathematics, Shandong University, Jinan 250100, China

* Corresponding author: Zhiyong Yu

Dedicated to Professor Jiongmin Yong’s 60 Birthday

Received  August 2017 Revised  March 2018 Published  September 2018

Fund Project: This work is supported in part by the National Natural Science Foundation of China (11471192, 11401091, 11571203), the Nature Science Foundation of Shandong Province (JQ201401), the Fundamental Research Funds of Shandong University (2017JC016), and the Fundamental Research Funds for the Central Universities (2412017FZ008).

In this paper, a kind of time-inconsistent recursive zero-sum stochastic differential game problems are studied by a hierarchical backward sequence of time-consistent subgames. The notion of feedback control-strategy law is adopted to constitute a closed-loop formulation. Instead of the time-inconsistent saddle points, a new concept named equilibrium saddle points is introduced and investigated, which is time-consistent and can be regarded as a local approximate saddle point in a proper sense. Moreover, a couple of equilibrium Hamilton-Jacobi-Bellman-Isaacs equations are obtained to characterize the equilibrium values and construct the equilibrium saddle points.

Citation: Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045
References:
[1]

T. Björk and A. Murgoci, A theory of Markovian time-inconsistent stochastic control in discrete time, Finance Stoch., 18 (2014), 545-592.  doi: 10.1007/s00780-014-0234-y.

[2]

T. BjörkA. Murgoci and X. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.

[3]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamiltion-Jacobi-Bellman-Isaacs equation, SIAM J. Control Optim., 47 (2008), 444-475.  doi: 10.1137/060671954.

[4]

D. Duffie and L. G. Epstein, Stochastic differential utility, Econometrica, 60 (1992), 353-394.  doi: 10.2307/2951600.

[5]

I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent, Math. Financ. Econ., 4 (2010), 29-55.  doi: 10.1007/s11579-010-0034-x.

[6]

N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.

[7]

R. Elliott and N. J. Kalton, Values in differential games, Bulletin of the American Mathematical Society, 78 (1972), 427-431.  doi: 10.1090/S0002-9904-1972-12929-X.

[8]

L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., 33 (1984), 773-797.  doi: 10.1512/iumj.1984.33.33040.

[9]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J., 38 (1989), 293-314.  doi: 10.1512/iumj.1989.38.38015.

[10]

Y. HuH. Jin and X. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548-1572.  doi: 10.1137/110853960.

[11]

J. MaP. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly - a four step scheme, Probab. Theory Related Fields, 98 (1994), 339-359.  doi: 10.1007/BF01192258.

[12]

E. Pardoux and S. Peng, Backward stochastic differential equations and quasi-linear parabolic partial differential equations, in: Stochastic Partial Differential Equations and their Applications. Lect. Notes in Control & Info. Sci. (eds. B. L. Rozovskii and R. S. Sowers), 176, Springer, Berlin, Heidelberg, 1992,200-217. doi: 10.1007/BFb0007334.

[13]

S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics Stochastics Rep., 37 (1991), 61-74.  doi: 10.1080/17442509108833727.

[14]

R. A. Pollak, Consistent planning, Review of Economic Studies, 35 (1968), 201-208.  doi: 10.2307/2296548.

[15]

Q. WeiJ. Yong and Z. Yu, Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2017), 4156-4201.  doi: 10.1137/16M1079415.

[16]

J. Yong, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Relat. Fields, 1 (2011), 83-118.  doi: 10.3934/mcrf.2011.1.83.

[17]

J. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Relat. Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.

[18]

J. Yong, Time-inconsistent optimal control problems, Proceedings of 2014 ICM, Section 16. Control Theory and Optimization, 4 (2014), 947-969. 

[19]

J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations — time-consistent solutions, Trans. Amer. Math. Soc., 369 (2017), 5467-5523.  doi: 10.1090/tran/6502.

[20]

J. Yong and X. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations, Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1466-3.

[21]

Z. Yu, An optimal feedback control-strategy pair for zero-sum linear-quadratic stochastic differential game: The Riccati equation approach, SIAM J. Control Optim., 53 (2015), 2141-2167.  doi: 10.1137/130947465.

show all references

References:
[1]

T. Björk and A. Murgoci, A theory of Markovian time-inconsistent stochastic control in discrete time, Finance Stoch., 18 (2014), 545-592.  doi: 10.1007/s00780-014-0234-y.

[2]

T. BjörkA. Murgoci and X. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.

[3]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamiltion-Jacobi-Bellman-Isaacs equation, SIAM J. Control Optim., 47 (2008), 444-475.  doi: 10.1137/060671954.

[4]

D. Duffie and L. G. Epstein, Stochastic differential utility, Econometrica, 60 (1992), 353-394.  doi: 10.2307/2951600.

[5]

I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent, Math. Financ. Econ., 4 (2010), 29-55.  doi: 10.1007/s11579-010-0034-x.

[6]

N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.

[7]

R. Elliott and N. J. Kalton, Values in differential games, Bulletin of the American Mathematical Society, 78 (1972), 427-431.  doi: 10.1090/S0002-9904-1972-12929-X.

[8]

L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., 33 (1984), 773-797.  doi: 10.1512/iumj.1984.33.33040.

[9]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J., 38 (1989), 293-314.  doi: 10.1512/iumj.1989.38.38015.

[10]

Y. HuH. Jin and X. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548-1572.  doi: 10.1137/110853960.

[11]

J. MaP. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly - a four step scheme, Probab. Theory Related Fields, 98 (1994), 339-359.  doi: 10.1007/BF01192258.

[12]

E. Pardoux and S. Peng, Backward stochastic differential equations and quasi-linear parabolic partial differential equations, in: Stochastic Partial Differential Equations and their Applications. Lect. Notes in Control & Info. Sci. (eds. B. L. Rozovskii and R. S. Sowers), 176, Springer, Berlin, Heidelberg, 1992,200-217. doi: 10.1007/BFb0007334.

[13]

S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics Stochastics Rep., 37 (1991), 61-74.  doi: 10.1080/17442509108833727.

[14]

R. A. Pollak, Consistent planning, Review of Economic Studies, 35 (1968), 201-208.  doi: 10.2307/2296548.

[15]

Q. WeiJ. Yong and Z. Yu, Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2017), 4156-4201.  doi: 10.1137/16M1079415.

[16]

J. Yong, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Relat. Fields, 1 (2011), 83-118.  doi: 10.3934/mcrf.2011.1.83.

[17]

J. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Relat. Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.

[18]

J. Yong, Time-inconsistent optimal control problems, Proceedings of 2014 ICM, Section 16. Control Theory and Optimization, 4 (2014), 947-969. 

[19]

J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations — time-consistent solutions, Trans. Amer. Math. Soc., 369 (2017), 5467-5523.  doi: 10.1090/tran/6502.

[20]

J. Yong and X. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations, Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1466-3.

[21]

Z. Yu, An optimal feedback control-strategy pair for zero-sum linear-quadratic stochastic differential game: The Riccati equation approach, SIAM J. Control Optim., 53 (2015), 2141-2167.  doi: 10.1137/130947465.

[1]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[2]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[3]

Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3767-3793. doi: 10.3934/cpaa.2021130

[4]

Xuhui Wang, Lei Hu. A new method to solve the Hamilton-Jacobi-Bellman equation for a stochastic portfolio optimization model with boundary memory. Journal of Industrial and Management Optimization, 2022, 18 (6) : 3831-3845. doi: 10.3934/jimo.2021137

[5]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control and Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[6]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[7]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[8]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[9]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial and Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[10]

Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046

[11]

Martino Bardi, Gabriele Terrone. On the homogenization of some non-coercive Hamilton--Jacobi--Isaacs equations. Communications on Pure and Applied Analysis, 2013, 12 (1) : 207-236. doi: 10.3934/cpaa.2013.12.207

[12]

Federica Masiero. Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 223-263. doi: 10.3934/dcds.2012.32.223

[13]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[14]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control and Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[15]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control and Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[16]

Matthieu Brachet, Philippe Parnaudeau, Morgan Pierre. Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1987-2031. doi: 10.3934/dcdss.2022110

[17]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[18]

Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855

[19]

Weijun Meng, Jingtao Shi. A linear quadratic stochastic Stackelberg differential game with time delay. Mathematical Control and Related Fields, 2022, 12 (3) : 581-609. doi: 10.3934/mcrf.2021035

[20]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (360)
  • HTML views (334)
  • Cited by (2)

Other articles
by authors

[Back to Top]