In this paper, a kind of time-inconsistent recursive zero-sum stochastic differential game problems are studied by a hierarchical backward sequence of time-consistent subgames. The notion of feedback control-strategy law is adopted to constitute a closed-loop formulation. Instead of the time-inconsistent saddle points, a new concept named equilibrium saddle points is introduced and investigated, which is time-consistent and can be regarded as a local approximate saddle point in a proper sense. Moreover, a couple of equilibrium Hamilton-Jacobi-Bellman-Isaacs equations are obtained to characterize the equilibrium values and construct the equilibrium saddle points.
Citation: |
T. Björk
and A. Murgoci
, A theory of Markovian time-inconsistent stochastic control in discrete time, Finance Stoch., 18 (2014)
, 545-592.
doi: 10.1007/s00780-014-0234-y.![]() ![]() ![]() |
|
T. Björk
, A. Murgoci
and X. Zhou
, Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014)
, 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x.![]() ![]() ![]() |
|
R. Buckdahn
and J. Li
, Stochastic differential games and viscosity solutions of Hamiltion-Jacobi-Bellman-Isaacs equation, SIAM J. Control Optim., 47 (2008)
, 444-475.
doi: 10.1137/060671954.![]() ![]() ![]() |
|
D. Duffie
and L. G. Epstein
, Stochastic differential utility, Econometrica, 60 (1992)
, 353-394.
doi: 10.2307/2951600.![]() ![]() ![]() |
|
I. Ekeland
and A. Lazrak
, The golden rule when preferences are time inconsistent, Math. Financ. Econ., 4 (2010)
, 29-55.
doi: 10.1007/s11579-010-0034-x.![]() ![]() ![]() |
|
N. El Karoui
, S. Peng
and M. C. Quenez
, Backward stochastic differential equations in finance, Math. Finance, 7 (1997)
, 1-71.
doi: 10.1111/1467-9965.00022.![]() ![]() ![]() |
|
R. Elliott
and N. J. Kalton
, Values in differential games, Bulletin of the American Mathematical Society, 78 (1972)
, 427-431.
doi: 10.1090/S0002-9904-1972-12929-X.![]() ![]() ![]() |
|
L. C. Evans
and P. E. Souganidis
, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., 33 (1984)
, 773-797.
doi: 10.1512/iumj.1984.33.33040.![]() ![]() ![]() |
|
W. H. Fleming
and P. E. Souganidis
, On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J., 38 (1989)
, 293-314.
doi: 10.1512/iumj.1989.38.38015.![]() ![]() ![]() |
|
Y. Hu
, H. Jin
and X. Zhou
, Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012)
, 1548-1572.
doi: 10.1137/110853960.![]() ![]() ![]() |
|
J. Ma
, P. Protter
and J. Yong
, Solving forward-backward stochastic differential equations explicitly - a four step scheme, Probab. Theory Related Fields, 98 (1994)
, 339-359.
doi: 10.1007/BF01192258.![]() ![]() ![]() |
|
E. Pardoux and S. Peng, Backward stochastic differential equations and quasi-linear parabolic partial differential equations, in: Stochastic Partial Differential Equations and their Applications. Lect. Notes in Control & Info. Sci. (eds. B. L. Rozovskii and R. S. Sowers), 176, Springer, Berlin, Heidelberg, 1992,200-217.
doi: 10.1007/BFb0007334.![]() ![]() ![]() |
|
S. Peng
, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics Stochastics Rep., 37 (1991)
, 61-74.
doi: 10.1080/17442509108833727.![]() ![]() ![]() |
|
R. A. Pollak
, Consistent planning, Review of Economic Studies, 35 (1968)
, 201-208.
doi: 10.2307/2296548.![]() ![]() |
|
Q. Wei
, J. Yong
and Z. Yu
, Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2017)
, 4156-4201.
doi: 10.1137/16M1079415.![]() ![]() ![]() |
|
J. Yong
, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Relat. Fields, 1 (2011)
, 83-118.
doi: 10.3934/mcrf.2011.1.83.![]() ![]() ![]() |
|
J. Yong
, Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Relat. Fields, 2 (2012)
, 271-329.
doi: 10.3934/mcrf.2012.2.271.![]() ![]() ![]() |
|
J. Yong
, Time-inconsistent optimal control problems, Proceedings of 2014 ICM, Section 16. Control Theory and Optimization, 4 (2014)
, 947-969.
![]() ![]() |
|
J. Yong
, Linear-quadratic optimal control problems for mean-field stochastic differential equations — time-consistent solutions, Trans. Amer. Math. Soc., 369 (2017)
, 5467-5523.
doi: 10.1090/tran/6502.![]() ![]() ![]() |
|
J. Yong and X. Zhou,
Stochastic Controls. Hamiltonian Systems and HJB Equations, Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3.![]() ![]() ![]() |
|
Z. Yu
, An optimal feedback control-strategy pair for zero-sum linear-quadratic stochastic differential game: The Riccati equation approach, SIAM J. Control Optim., 53 (2015)
, 2141-2167.
doi: 10.1137/130947465.![]() ![]() ![]() |