In this paper, we establish a Hölder-type quantitative estimate of unique continuation for solutions to the heat equation with Coulomb potentials in either a bounded convex domain or a $C^2$-smooth bounded domain. The approach is based on the frequency function method, as well as some parabolic-type Hardy inequalities.
Citation: |
J. Apraiz
, L. Escauriaza
, G. Wang
and C. Zhang
, Observability inequalities and measurable sets, J. Eur. Math. Soc., 16 (2014)
, 2433-2475.
doi: 10.4171/JEMS/490.![]() ![]() ![]() |
|
C. Bardos
and K. D. Phung
, Observation estimate for kinetic transport equation by diffusion approximation, Comptes Rendus Mathematique, 355 (2017)
, 640-664.
doi: 10.1016/j.crma.2017.04.017.![]() ![]() ![]() |
|
X. Y. Chen
, A strong unique continuation theorem for parabolic equations, Mathematische Annalen, 311 (1998)
, 603-630.
doi: 10.1007/s002080050202.![]() ![]() ![]() |
|
S. Ervedoza
, Control and stabilization properties for a singular heat equation with an inverse-square potential, Communications in Partial Differential Equations, 33 (2008)
, 1996-2019.
doi: 10.1080/03605300802402633.![]() ![]() ![]() |
|
L. Escauriaza
, S. Montaner
and C. Zhang
, Observation from measurable sets for parabolic analytic evolutions and applications, J. Math. Pures Appl., 104 (2015)
, 837-867.
doi: 10.1016/j.matpur.2015.05.005.![]() ![]() ![]() |
|
L. Escauriaza
, S. Montaner
and C. Zhang
, Analyticity of solutions to parabolic evolutions and applications, SIAM Journal on Mathematical Analysis, 49 (2017)
, 4064-4092.
doi: 10.1137/15M1039705.![]() ![]() ![]() |
|
L. Escauriaza
, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000)
, 113-127.
doi: 10.1215/S0012-7094-00-10415-2.![]() ![]() ![]() |
|
L. Escauriaza
and F. J. Fernández
, Unique continuation for parabolic operators, Ark. Mat., 41 (2003)
, 35-60.
doi: 10.1007/BF02384566.![]() ![]() ![]() |
|
L. Escauriaza
, F. J. Fernández
and S. Vessella
, Doubling properties of caloric functions, Appl. Anal., 85 (2006)
, 205-223.
doi: 10.1080/00036810500277082.![]() ![]() ![]() |
|
L. C. Evans,
Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Soc., 2010.
doi: 10.1090/gsm/019.![]() ![]() ![]() |
|
V. Felli
and A. Primo
, Classification of local asymptotic for solutions to heat equations with inverse-square potentials, Discrete and Continuous Dynamical Systems - A, 31 (2011)
, 65-107.
doi: 10.3934/dcds.2011.31.65.![]() ![]() ![]() |
|
F. J. Fernández
, Unique continuation for parabolic operators Ⅱ, Communications in Partial Differential Equations, 28 (2003)
, 1597-1604.
doi: 10.1081/PDE-120024523.![]() ![]() ![]() |
|
N. Garofalo
and F. H. Lin
, Monotonicity properties of variational integrals: Ap weights and unique continuation, Indiana University Math. J., 35 (1986)
, 245-268.
doi: 10.1512/iumj.1986.35.35015.![]() ![]() ![]() |
|
N. Garofalo
and F. H. Lin
, Unique continuation for elliptic operators: A geometric-variation approach, Comm. Pure. Appl. Math, 40 (1987)
, 347-366.
doi: 10.1002/cpa.3160400305.![]() ![]() ![]() |
|
I. Kukavica
and K. Nyström
, Unique continuation on the boundary for Dini domains, Proc. Amer. Math. Soc., 126 (1998)
, 441-446.
doi: 10.1090/S0002-9939-98-04065-9.![]() ![]() ![]() |
|
X. Li and J. Yong,
Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications, Inc., Boston, MA, 1995.
doi: 10.1007/978-1-4612-4260-4.![]() ![]() ![]() |
|
F. H. Lin
, A uniqueness theorem for parabolic equations, Comm. Pure. Appl. Math, 43 (1990)
, 127-136.
doi: 10.1002/cpa.3160430105.![]() ![]() ![]() |
|
J. L. Lions,
Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin Heildeberg New York, 1971.
![]() ![]() |
|
Q. Lü
and Z. Yin
, Unique continuation for stochastic heat equations, ESAIM Control Optim. Calc. Var., 21 (2015)
, 378-398.
doi: 10.1051/cocv/2014027.![]() ![]() ![]() |
|
Q. Lü, Strong unique continuation property for stochastic parabolic equations, preprint, arXiv: 1701.02136.
![]() |
|
T. Okaji, A note on unique continuation for parabolic operators with singular potentials, in Studies in Phase Space Analysis with Applications to PDEs, Springer New York, 84 (2013), 291-312.
doi: 10.1007/978-1-4614-6348-1_13.![]() ![]() ![]() |
|
K. D. Phung, Carleman commutator approach in logarithmic convexity for parabolic equations, preprint.
![]() |
|
K. D. Phung
and G. Wang
, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010)
, 1230-1247.
doi: 10.1016/j.jfa.2010.04.015.![]() ![]() ![]() |
|
K. D. Phung
and G. Wang
, An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., 15 (2013)
, 681-703.
doi: 10.4171/JEMS/371.![]() ![]() ![]() |
|
K. D. Phung
, G. Wang
and Y. Xu
, Impulse output rapid stabilization for heat equations, Journal of Differential Equations, 263 (2017)
, 5012-5041.
doi: 10.1016/j.jde.2017.06.008.![]() ![]() ![]() |
|
K. D. Phung
, L. Wang
and C. Zhang
, Bang-bang property for time optimal control of semilinear heat equation, Annales de I'Institut Henri Poincare (C) Non Linear Analysis, 31 (2014)
, 477-499.
doi: 10.1016/j.anihpc.2013.04.005.![]() ![]() ![]() |
|
C. C. Poon
, Unique continuation for parabolic equations, Communications in Partial Differential Equations, 21 (1996)
, 521-539.
doi: 10.1080/03605309608821195.![]() ![]() ![]() |
|
J. Vancostenoble
and E. Zuazua
, Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal., 254 (2008)
, 1864-1902.
doi: 10.1016/j.jfa.2007.12.015.![]() ![]() ![]() |
|
J. L. Vazquez
and E. Zuazua
, The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000)
, 103-153.
doi: 10.1006/jfan.1999.3556.![]() ![]() ![]() |
|
S. Vessella, Unique continuation properties and quantitative estimates of unique continuation for parabolic equations, in Handbook of Differential Equations: Evolutionary Equations, 5 (2009), 421-500.
doi: 10.1016/S1874-5717(08)00212-0.![]() ![]() ![]() |
|
G. Wang
and C. Zhang
, Observability inequalities from measurable sets for some abstract evolution equations, SIAM J. Control Optim., 55 (2017)
, 1862-1886.
doi: 10.1137/15M1051907.![]() ![]() ![]() |
|
G. Wang
and E. Zuazua
, On the equivalence of minimal time and minimal norm controls for internally controlled heat equations, SIAM J. Control Optim., 50 (2012)
, 2938-2958.
doi: 10.1137/110857398.![]() ![]() ![]() |
|
L. Wang
and Q. Yan
, Bang-bang property of time optimal null controls for some semilinear heat equation, SIAM J. Control Optim., 54 (2016)
, 2949-2964.
doi: 10.1137/140997452.![]() ![]() ![]() |
|
H. Yu
, Approximation of time optimal controls for heat equations with perturbations in the system potential, SIAM J. Control Optim., 52 (2014)
, 1663-1692.
doi: 10.1137/120904251.![]() ![]() ![]() |
|
X. Zhang
, Unique continuation for stochastic parabolic equations, Differential Integral Equations, 21 (2008)
, 81-93.
![]() ![]() |
|
Y. Zhang
, Two equivalence theorems of different kinds of optimal control problems for Schrödinger equations, SIAM J. Control Optim., 53 (2015)
, 926-947.
doi: 10.1137/130941195.![]() ![]() ![]() |
|
Y. Zhang
, Unique continuation estimates for the Kolmogorov equation in the whole space, C. R. Math. Acad. Sci. Paris, 354 (2016)
, 389-393.
doi: 10.1016/j.crma.2016.01.009.![]() ![]() ![]() |