- Previous Article
- MCRF Home
- This Issue
-
Next Article
Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential
Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain
Mathematical Neuroscience Laboratory, CIRB-Collège de France and BANG Laboratory, INRIA Paris-Rocquencourt, 11, place Marcelin Berthelot, 75005 Paris, France |
References:
[1] |
K. Beauchard,
Local controllability of a 1-d schrödinger equation, Journal de Mathématiques Pures et Appliquées, 84 (2005), 851-956.
doi: 10.1016/j.matpur.2005.02.005. |
[2] |
H. Brezis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, France, 1983. |
[3] |
J. Lohéac, E. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, 2017. |
[4] |
I. Moyano,
Controllability of a 2d quantum particle in a time-varying disc with radial data, Journal of Mathematical Analysis and Applications, 455 (2017), 1323-1350.
doi: 10.1016/j.jmaa.2017.05.002. |
[5] |
Y. Privat, E. Trélat and E. Zuazua,
Optimal observation of the one-dimensional wave equation, Journal of Fourier Analysis and Applications, 19 (2013), 514-544.
doi: 10.1007/s00041-013-9267-4. |
[6] |
J. Touboul,
Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain, Mathematical Control and Related Fields, 2 (2013), 429-455.
doi: 10.3934/mcrf.2012.2.429. |
[7] |
E. Trélat, C. Zhang and E. Zuazua, Optimal shape design for 2D heat equations in large time, arXiv preprint, arXiv: 1705.02764, 2017. |
show all references
References:
[1] |
K. Beauchard,
Local controllability of a 1-d schrödinger equation, Journal de Mathématiques Pures et Appliquées, 84 (2005), 851-956.
doi: 10.1016/j.matpur.2005.02.005. |
[2] |
H. Brezis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, France, 1983. |
[3] |
J. Lohéac, E. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, 2017. |
[4] |
I. Moyano,
Controllability of a 2d quantum particle in a time-varying disc with radial data, Journal of Mathematical Analysis and Applications, 455 (2017), 1323-1350.
doi: 10.1016/j.jmaa.2017.05.002. |
[5] |
Y. Privat, E. Trélat and E. Zuazua,
Optimal observation of the one-dimensional wave equation, Journal of Fourier Analysis and Applications, 19 (2013), 514-544.
doi: 10.1007/s00041-013-9267-4. |
[6] |
J. Touboul,
Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain, Mathematical Control and Related Fields, 2 (2013), 429-455.
doi: 10.3934/mcrf.2012.2.429. |
[7] |
E. Trélat, C. Zhang and E. Zuazua, Optimal shape design for 2D heat equations in large time, arXiv preprint, arXiv: 1705.02764, 2017. |
[1] |
Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control and Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429 |
[2] |
Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469 |
[3] |
Abdeladim El Akri, Lahcen Maniar. Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations. Mathematical Control and Related Fields, 2020, 10 (4) : 669-698. doi: 10.3934/mcrf.2020015 |
[4] |
Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control and Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203 |
[5] |
Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control and Related Fields, 2020, 10 (2) : 217-256. doi: 10.3934/mcrf.2019037 |
[6] |
Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068 |
[7] |
Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041 |
[8] |
Víctor Hernández-Santamaría, Luz de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations and Control Theory, 2018, 7 (2) : 247-273. doi: 10.3934/eect.2018012 |
[9] |
Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217 |
[10] |
Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719 |
[11] |
Louis Tebou. Simultaneous controllability of some uncoupled semilinear wave equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3721-3743. doi: 10.3934/dcds.2015.35.3721 |
[12] |
Feng Bao, Yanzhao Cao, Weidong Zhao. A first order semi-discrete algorithm for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1297-1313. doi: 10.3934/dcdsb.2015.20.1297 |
[13] |
Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183 |
[14] |
Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745 |
[15] |
Sylvie Benzoni-Gavage, Pierre Huot. Existence of semi-discrete shocks. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 163-190. doi: 10.3934/dcds.2002.8.163 |
[16] |
Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations and Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005 |
[17] |
Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556 |
[18] |
Ali Wehbe, Marwa Koumaiha, Layla Toufaily. Boundary observability and exact controllability of strongly coupled wave equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1269-1305. doi: 10.3934/dcdss.2021091 |
[19] |
S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590 |
[20] |
Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control and Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]