
-
Previous Article
The generalised singular perturbation approximation for bounded real and positive real control systems
- MCRF Home
- This Issue
-
Next Article
On a logarithmic stability estimate for an inverse heat conduction problem
Application of the boundary control method to partial data Borg-Levinson inverse spectral problem
1. | Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France |
2. | Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France |
3. | Department of Mathematics, University College London, London, UK |
We consider the multidimensional Borg-Levinson problem of determining a potential $q$, appearing in the Dirichlet realization of the Schrödinger operator $A_q = -\Delta+q$ on a bounded domain $\Omega\subset\mathbb{R}^n$, $n\geq2$, from the boundary spectral data of $A_q$ on an arbitrary portion of $\partial\Omega$. More precisely, for $\gamma$ an open and non-empty subset of $\partial\Omega$, we consider the boundary spectral data on $\gamma$ given by ${\rm BSD}(q, \gamma): = \{(\lambda_{k}, {\partial_\nu \varphi_{k}}_{|\gamma}):\ k \geq1\}$, where $\{ \lambda_k:\ k \geq1\}$ is the non-decreasing sequence of eigenvalues of $A_q$, $\{ \varphi_k:\ k \geq1 \}$ an associated orthonormal basis of eigenfunctions, and $\nu$ is the unit outward normal vector to $\partial\Omega$. Our main result consists of determining a bounded potential $q\in L^\infty(\Omega)$ from the data ${\rm BSD}(q, \gamma)$. Previous uniqueness results, with arbitrarily small $\gamma$, assume that $q$ is smooth. Our approach is based on the Boundary Control method, and we give a self-contained presentation of the method, focusing on the analytic rather than geometric aspects of the method.
References:
[1] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM Journal on Control and Optimization, 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[2] |
M. Belishev,
An approach to multidimensional inverse problems for the wave equation, Dokl. Akad. Nauk SSSR, 297 (1987), 524-527.
|
[3] |
M. Belishev and Y. Kurylev,
To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. Partial Differential Equations, 17 (1992), 767-804.
doi: 10.1080/03605309208820863. |
[4] |
G. Borg,
Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math., 78 (1946), 1-96.
doi: 10.1007/BF02421600. |
[5] |
B. Canuto and O. Kavian, Determining two coefficients in elliptic operators via boundary spectral data: A uniqueness result, Bolletino Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), 207–230. |
[6] |
M. Choulli and P. Stefanov,
Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data, Commun. Partial Diff. Eqns., 38 (2013), 455-476.
|
[7] |
I. M. Gel'fand and B. M. Levitan,
On the determination of a differential equation from its spectral function, Izv. Akad. Nauk USSR, Ser. Mat., 15 (1951), 309-360.
|
[8] |
L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976. |
[9] |
H. Isozaki,
Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991), 743-753.
doi: 10.1215/kjm/1250519727. |
[10] |
A. Katchalov and Y. Kurylev,
Multidimensional inverse problem with incomplete boundary spectral data, Commun. Partial Diff. Eqns., 23 (1998), 55-95.
doi: 10.1080/03605309808821338. |
[11] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220. |
[12] |
A. Katchalov, Y. Kurylev, M. Lassas and N. Mandache,
Equivalence of time-domain inverse problems and boundary spectral problem, Inverse problems, 20 (2004), 419-436.
doi: 10.1088/0266-5611/20/2/007. |
[13] |
O. Kavian, Y. Kian and E. Soccorsi,
Uniqueness and stability results for an inverse spectral problem in a periodic waveguide, Journal de Mathématiques Pures et Appliquées, 104 (2015), 1160-1189.
doi: 10.1016/j.matpur.2015.09.002. |
[14] |
Y. Kian,
A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data, J. Spectr. Theory, 8 (2018), 235-269.
doi: 10.4171/JST/195. |
[15] |
Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, IMRN, 2017, https://doi.org/10.1093/imrn/rnx263.
doi: 10.1093/imrn/rnx263. |
[16] |
Y. Kurylev,
An inverse boundary problem for the Schrödinger operator with magnetic field, Journal of Mathematical Physics, 36 (1995), 2761-2776.
doi: 10.1063/1.531064. |
[17] |
Y. Kurylev and M. Lassas,
Gelf'and inverse problem for a quadratic operator pencil, Journal of Functional Analysis, 176 (2000), 247-263.
doi: 10.1006/jfan.2000.3615. |
[18] |
Y. Kurylev, L. Oksanen and G. Paternain, Inverse problems for the connection Laplacian, to appear in J. Differential Geom., arXiv: 1509.02645. |
[19] |
I. Lasiecka, J.-L. Lions and R. Triggiani,
Non homogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[20] |
M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Problems, 26 (2010), 085012, 19pp.
doi: 10.1088/0266-5611/26/8/085012. |
[21] |
M. Lassas and L. Oksanen,
Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., 163 (2014), 1071-1103.
|
[22] |
N. Levinson,
The inverse Strum-Liouville problem, Mat. Tidsskr. B, (1949), 25-30.
|
[23] |
J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. Ⅰ, Dunod, Paris, 1968. |
[24] |
J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. Ⅱ, Dunod, Paris, 1968. |
[25] |
A. Nachman, J. Sylvester and G. Uhlmann,
An n-dimensional Borg-Levinson theorem, Comm. Math. Phys., 115 (1988), 595-605.
doi: 10.1007/BF01224129. |
[26] |
L. Päivärinta and V. Serov,
An n-dimensional Borg-Levinson theorem for singular potentials, Adv. in Appl. Math., 29 (2002), 509-520.
|
[27] |
L. Robbiano and C. Zuily,
Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-539.
doi: 10.1007/s002220050212. |
[28] |
W. Rudin,
Real and Complex Analysis, McGraw Hill international editions, 1987. |
[29] |
J. Sylvester and G. Uhlmann,
A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.
doi: 10.2307/1971291. |
[30] |
D. Tataru,
Unique continuation for solutions to PDE; between Hörmander's theorem and Holmgren's theorem, Commun. Partial Diff. Eqns., 20 (1995), 855-884.
doi: 10.1080/03605309508821117. |
show all references
References:
[1] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM Journal on Control and Optimization, 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[2] |
M. Belishev,
An approach to multidimensional inverse problems for the wave equation, Dokl. Akad. Nauk SSSR, 297 (1987), 524-527.
|
[3] |
M. Belishev and Y. Kurylev,
To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. Partial Differential Equations, 17 (1992), 767-804.
doi: 10.1080/03605309208820863. |
[4] |
G. Borg,
Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math., 78 (1946), 1-96.
doi: 10.1007/BF02421600. |
[5] |
B. Canuto and O. Kavian, Determining two coefficients in elliptic operators via boundary spectral data: A uniqueness result, Bolletino Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), 207–230. |
[6] |
M. Choulli and P. Stefanov,
Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data, Commun. Partial Diff. Eqns., 38 (2013), 455-476.
|
[7] |
I. M. Gel'fand and B. M. Levitan,
On the determination of a differential equation from its spectral function, Izv. Akad. Nauk USSR, Ser. Mat., 15 (1951), 309-360.
|
[8] |
L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976. |
[9] |
H. Isozaki,
Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991), 743-753.
doi: 10.1215/kjm/1250519727. |
[10] |
A. Katchalov and Y. Kurylev,
Multidimensional inverse problem with incomplete boundary spectral data, Commun. Partial Diff. Eqns., 23 (1998), 55-95.
doi: 10.1080/03605309808821338. |
[11] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220. |
[12] |
A. Katchalov, Y. Kurylev, M. Lassas and N. Mandache,
Equivalence of time-domain inverse problems and boundary spectral problem, Inverse problems, 20 (2004), 419-436.
doi: 10.1088/0266-5611/20/2/007. |
[13] |
O. Kavian, Y. Kian and E. Soccorsi,
Uniqueness and stability results for an inverse spectral problem in a periodic waveguide, Journal de Mathématiques Pures et Appliquées, 104 (2015), 1160-1189.
doi: 10.1016/j.matpur.2015.09.002. |
[14] |
Y. Kian,
A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data, J. Spectr. Theory, 8 (2018), 235-269.
doi: 10.4171/JST/195. |
[15] |
Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, IMRN, 2017, https://doi.org/10.1093/imrn/rnx263.
doi: 10.1093/imrn/rnx263. |
[16] |
Y. Kurylev,
An inverse boundary problem for the Schrödinger operator with magnetic field, Journal of Mathematical Physics, 36 (1995), 2761-2776.
doi: 10.1063/1.531064. |
[17] |
Y. Kurylev and M. Lassas,
Gelf'and inverse problem for a quadratic operator pencil, Journal of Functional Analysis, 176 (2000), 247-263.
doi: 10.1006/jfan.2000.3615. |
[18] |
Y. Kurylev, L. Oksanen and G. Paternain, Inverse problems for the connection Laplacian, to appear in J. Differential Geom., arXiv: 1509.02645. |
[19] |
I. Lasiecka, J.-L. Lions and R. Triggiani,
Non homogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[20] |
M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Problems, 26 (2010), 085012, 19pp.
doi: 10.1088/0266-5611/26/8/085012. |
[21] |
M. Lassas and L. Oksanen,
Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., 163 (2014), 1071-1103.
|
[22] |
N. Levinson,
The inverse Strum-Liouville problem, Mat. Tidsskr. B, (1949), 25-30.
|
[23] |
J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. Ⅰ, Dunod, Paris, 1968. |
[24] |
J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. Ⅱ, Dunod, Paris, 1968. |
[25] |
A. Nachman, J. Sylvester and G. Uhlmann,
An n-dimensional Borg-Levinson theorem, Comm. Math. Phys., 115 (1988), 595-605.
doi: 10.1007/BF01224129. |
[26] |
L. Päivärinta and V. Serov,
An n-dimensional Borg-Levinson theorem for singular potentials, Adv. in Appl. Math., 29 (2002), 509-520.
|
[27] |
L. Robbiano and C. Zuily,
Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-539.
doi: 10.1007/s002220050212. |
[28] |
W. Rudin,
Real and Complex Analysis, McGraw Hill international editions, 1987. |
[29] |
J. Sylvester and G. Uhlmann,
A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.
doi: 10.2307/1971291. |
[30] |
D. Tataru,
Unique continuation for solutions to PDE; between Hörmander's theorem and Holmgren's theorem, Commun. Partial Diff. Eqns., 20 (1995), 855-884.
doi: 10.1080/03605309508821117. |



[1] |
Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems and Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449 |
[2] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[3] |
Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems and Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063 |
[4] |
Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 |
[5] |
Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021060 |
[6] |
Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029 |
[7] |
Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297 |
[8] |
Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95 |
[9] |
Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1 |
[10] |
Tony Liimatainen, Lauri Oksanen. Counterexamples to inverse problems for the wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 467-479. doi: 10.3934/ipi.2021058 |
[11] |
Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems and Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034 |
[12] |
Boya Liu. Stability estimates in a partial data inverse boundary value problem for biharmonic operators at high frequencies. Inverse Problems and Imaging, 2020, 14 (5) : 783-796. doi: 10.3934/ipi.2020036 |
[13] |
Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009 |
[14] |
Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems and Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229 |
[15] |
Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 |
[16] |
Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 |
[17] |
Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems and Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371 |
[18] |
Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139 |
[19] |
Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055 |
[20] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]