We consider the multidimensional Borg-Levinson problem of determining a potential $q$, appearing in the Dirichlet realization of the Schrödinger operator $A_q = -\Delta+q$ on a bounded domain $\Omega\subset\mathbb{R}^n$, $n\geq2$, from the boundary spectral data of $A_q$ on an arbitrary portion of $\partial\Omega$. More precisely, for $\gamma$ an open and non-empty subset of $\partial\Omega$, we consider the boundary spectral data on $\gamma$ given by ${\rm BSD}(q, \gamma): = \{(\lambda_{k}, {\partial_\nu \varphi_{k}}_{|\gamma}):\ k \geq1\}$, where $\{ \lambda_k:\ k \geq1\}$ is the non-decreasing sequence of eigenvalues of $A_q$, $\{ \varphi_k:\ k \geq1 \}$ an associated orthonormal basis of eigenfunctions, and $\nu$ is the unit outward normal vector to $\partial\Omega$. Our main result consists of determining a bounded potential $q\in L^\infty(\Omega)$ from the data ${\rm BSD}(q, \gamma)$. Previous uniqueness results, with arbitrarily small $\gamma$, assume that $q$ is smooth. Our approach is based on the Boundary Control method, and we give a self-contained presentation of the method, focusing on the analytic rather than geometric aspects of the method.
Citation: |
C. Bardos
, G. Lebeau
and J. Rauch
, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM Journal on Control and Optimization, 30 (1992)
, 1024-1065.
doi: 10.1137/0330055.![]() ![]() ![]() |
|
M. Belishev
, An approach to multidimensional inverse problems for the wave equation, Dokl. Akad. Nauk SSSR, 297 (1987)
, 524-527.
![]() ![]() |
|
M. Belishev
and Y. Kurylev
, To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. Partial Differential Equations, 17 (1992)
, 767-804.
doi: 10.1080/03605309208820863.![]() ![]() ![]() |
|
G. Borg
, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math., 78 (1946)
, 1-96.
doi: 10.1007/BF02421600.![]() ![]() ![]() |
|
B. Canuto and O. Kavian, Determining two coefficients in elliptic operators via boundary spectral data: A uniqueness result, Bolletino Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), 207–230.
![]() ![]() |
|
M. Choulli
and P. Stefanov
, Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data, Commun. Partial Diff. Eqns., 38 (2013)
, 455-476.
![]() |
|
I. M. Gel'fand
and B. M. Levitan
, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk USSR, Ser. Mat., 15 (1951)
, 309-360.
![]() ![]() |
|
L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.
![]() ![]() |
|
H. Isozaki
, Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991)
, 743-753.
doi: 10.1215/kjm/1250519727.![]() ![]() ![]() |
|
A. Katchalov
and Y. Kurylev
, Multidimensional inverse problem with incomplete boundary spectral data, Commun. Partial Diff. Eqns., 23 (1998)
, 55-95.
doi: 10.1080/03605309808821338.![]() ![]() ![]() |
|
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220.![]() ![]() ![]() |
|
A. Katchalov
, Y. Kurylev
, M. Lassas
and N. Mandache
, Equivalence of time-domain inverse problems and boundary spectral problem, Inverse problems, 20 (2004)
, 419-436.
doi: 10.1088/0266-5611/20/2/007.![]() ![]() ![]() |
|
O. Kavian
, Y. Kian
and E. Soccorsi
, Uniqueness and stability results for an inverse spectral problem in a periodic waveguide, Journal de Mathématiques Pures et Appliquées, 104 (2015)
, 1160-1189.
doi: 10.1016/j.matpur.2015.09.002.![]() ![]() ![]() |
|
Y. Kian
, A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data, J. Spectr. Theory, 8 (2018)
, 235-269.
doi: 10.4171/JST/195.![]() ![]() ![]() |
|
Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, IMRN, 2017, https://doi.org/10.1093/imrn/rnx263.
doi: 10.1093/imrn/rnx263.![]() ![]() |
|
Y. Kurylev
, An inverse boundary problem for the Schrödinger operator with magnetic field, Journal of Mathematical Physics, 36 (1995)
, 2761-2776.
doi: 10.1063/1.531064.![]() ![]() ![]() |
|
Y. Kurylev
and M. Lassas
, Gelf'and inverse problem for a quadratic operator pencil, Journal of Functional Analysis, 176 (2000)
, 247-263.
doi: 10.1006/jfan.2000.3615.![]() ![]() ![]() |
|
Y. Kurylev, L. Oksanen and G. Paternain, Inverse problems for the connection Laplacian, to appear in J. Differential Geom., arXiv: 1509.02645.
![]() |
|
I. Lasiecka
, J.-L. Lions
and R. Triggiani
, Non homogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986)
, 149-192.
![]() ![]() |
|
M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Problems, 26 (2010), 085012, 19pp.
doi: 10.1088/0266-5611/26/8/085012.![]() ![]() ![]() |
|
M. Lassas
and L. Oksanen
, Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., 163 (2014)
, 1071-1103.
![]() |
|
N. Levinson
, The inverse Strum-Liouville problem, Mat. Tidsskr. B, (1949)
, 25-30.
![]() |
|
J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. Ⅰ, Dunod, Paris, 1968.
![]() ![]() |
|
J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. Ⅱ, Dunod, Paris, 1968.
![]() ![]() |
|
A. Nachman
, J. Sylvester
and G. Uhlmann
, An n-dimensional Borg-Levinson theorem, Comm. Math. Phys., 115 (1988)
, 595-605.
doi: 10.1007/BF01224129.![]() ![]() ![]() |
|
L. Päivärinta
and V. Serov
, An n-dimensional Borg-Levinson theorem for singular potentials, Adv. in Appl. Math., 29 (2002)
, 509-520.
![]() |
|
L. Robbiano
and C. Zuily
, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998)
, 493-539.
doi: 10.1007/s002220050212.![]() ![]() ![]() |
|
W. Rudin,
Real and Complex Analysis, McGraw Hill international editions, 1987.
![]() ![]() |
|
J. Sylvester
and G. Uhlmann
, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987)
, 153-169.
doi: 10.2307/1971291.![]() ![]() ![]() |
|
D. Tataru
, Unique continuation for solutions to PDE; between Hörmander's theorem and Holmgren's theorem, Commun. Partial Diff. Eqns., 20 (1995)
, 855-884.
doi: 10.1080/03605309508821117.![]() ![]() ![]() |
Geometric condition (3.10)
Sets
Support of the geometric optics solution