The paper considers the initial value problem of a general type of nonlinear Schrödinger equations
$ iu_t+u_{xx}+f(u) = 0 , \;\;\;\; u ( x, 0 ) = w_0 (x) $
posed on a finite domain $ x\in [0, L] $ with an $ L^2 $-stabilizing feedback control law $ u(0, t) = \beta u(L, t), \beta u_x(0, t)-u_x(L, t) = i\alpha u(0, t), $ where $ L>0 $, $ \alpha, \beta $ are real constants with $ \alpha\beta<0 $ and $ \beta\neq \pm 1 $, and $ f(u) $ is a smooth function from $ \mathbb{C} $ to $ \mathbb{C} $ satisfying some growth conditions. It is shown that for $ s \in \left ( \frac12, 1\right ] $ and $ w_0 (x) \in H^s(0, L ) $ with the boundary conditions described above, the problem is locally well-posed for $ u \in C([0, T]; H^s (0, L )) $. Moreover, the solution with small initial condition exists globally and approaches to 0 as $ t \rightarrow + \infty $.
Citation: |
J. L. Bona
, S. M. Sun
and B.-Y. Zhang
, Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations, J. Math. Pures Appl., 109 (2018)
, 1-66.
doi: 10.1016/j.matpur.2017.11.001.![]() ![]() ![]() |
|
J. Bourgain
, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part Ⅰ: Schrödinger equations, Geom. Funct. Anal., 3 (1993)
, 107-156.
doi: 10.1007/BF01896020.![]() ![]() ![]() |
|
J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, Colloqium Publication, Vol. 46, American Mathematical Society, Providence, RI, 1999.
doi: 10.1090/coll/046.![]() ![]() ![]() |
|
H. Brézis
and T. Gallouet
, Nonlinear Schrödinger evolution equation, Nonlinear Anal. TMA, 4 (1980)
, 677-681.
doi: 10.1016/0362-546X(80)90068-1.![]() ![]() ![]() |
|
C. Bu
, An initial-boundary value problem of the nonlinear Schrödinger equation, Appl. Anal., 53 (1994)
, 241-254.
doi: 10.1080/00036819408840260.![]() ![]() ![]() |
|
C. Bu
, Nonlinear Schrödinger equation on the semi-infinite line, Chinese Annals of Math., 21 (2000)
, 209-222.
![]() ![]() |
|
C. Bu, K. Tsutaya and C Zhang, Nonlinear Schrödinger equation with inhomogebeous Dirichlet boundary data, J. Math. Phys., 46 (2005), 083504, 6pp.
doi: 10.1063/1.1914730.![]() ![]() ![]() |
|
T. Cazenave, Semilinear Schrödinger Equations, American Math. Soc., Providence, RI, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
|
T. Cazenave
, D. Fang
and Z. Han
, Continuous dependence for NLS in fractional order spaces, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 28 (2011)
, 135-147.
doi: 10.1016/j.anihpc.2010.11.005.![]() ![]() ![]() |
|
T. Cazenave
and F. B. Weissler
, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. TMA, 14 (1990)
, 807-836.
doi: 10.1016/0362-546X(90)90023-A.![]() ![]() ![]() |
|
A. Chabchoub, N. Hoffmann and N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106 (2011), 204502.
doi: 10.1103/PhysRevLett.106.204502.![]() ![]() |
|
N. Dunford and J. T. Schwartz, Linear Operators, Part III, Wiley-Interscience, New York, 1971.
![]() ![]() |
|
M. Fujii
and R. Nakamoto
, Simultaneous Extensions of Selberg inequality and Heinz-Kato-Furuta inequality, Nihonkai Math., 9 (1998)
, 219-225.
![]() ![]() |
|
G. Gao
and S. M. Sun
, A Korteweg-de Vries type of fifth-order equations on a finite domain with point dissipation, J. Math. Anal. Appl., 438 (2016)
, 200-239.
doi: 10.1016/j.jmaa.2016.01.050.![]() ![]() ![]() |
|
J. Ginibre
and G. Velo
, On a class of nonlinear Schrödinger equations. Ⅰ. The Cauchy problem, general case, J. Functional Anal., 32 (1979)
, 1-32.
doi: 10.1016/0022-1236(79)90076-4.![]() ![]() ![]() |
|
J. Ginibre
and G. Velo
, On a class of nonlinear Schrödinger equations. Ⅱ. Scattering theory, general case, J. Functinal Anal., 32 (1979)
, 33-71.
doi: 10.1016/0022-1236(79)90077-6.![]() ![]() ![]() |
|
L. F. Ho
and D. L. Russell
, Admissible input elements for systems in Hillbert space and Carleson measure criterion, SIAM J. Control. Optim., 21 (1983)
, 614-640.
doi: 10.1137/0321037.![]() ![]() ![]() |
|
J. Holmer
, The initial-boundary value problem for the $1$-$d$ nonlinear Schrödinger equation on the half-line, Diff. Integral Equations, 18 (2005)
, 647-668.
![]() ![]() |
|
F.-L. Huang
, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985)
, 43-56.
![]() ![]() |
|
R. Illner
, H. Lange
and H. Teismann
, A note on the exact internal control of nonlinear Schrödinger equations, CRM Proc. Lecture Notes, 33 (2003)
, 127-137.
![]() ![]() |
|
R. Illner
, H. Lange
and H. Teismann
, Limitations on the control of Schrödinger equations, ESAIM Control Optim. Calc. Var., 12 (2006)
, 615-635.
doi: 10.1051/cocv:2006014.![]() ![]() ![]() |
|
T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Phys. Theor., 46 (1987), 113--129.
![]() ![]() |
|
T. Kato
, On nonlinear Scrhödinger equations. Ⅱ. $H^s$-solutions and unconditional well-posedness, J. d'Analyse Math., 67 (1995)
, 281-306.
doi: 10.1007/BF02787794.![]() ![]() ![]() |
|
S. Kamvissis, Semiclassical nonlinear Schrödinger on the half line, J. Math. Phys., 44 (2003), 5849--5868.
doi: 10.1063/1.1624091.![]() ![]() ![]() |
|
V. Komornik, A generalization of Ingham's inequality, in Colloq. Math. Soc. $J\grave{a}nos$ Bolyai, Differential Equations Applications, 62 (1991), 213--217.
![]() ![]() |
|
H. Lange
and H. Teismann
, Controllability of the nonlinear Schrödinger equation in the vicinity of the ground state, Math. Methods Appl. Sci., 30 (2007)
, 1483-1505.
doi: 10.1002/mma.849.![]() ![]() ![]() |
|
G. Lumer
and R. S. Phillips
, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961)
, 679-698.
doi: 10.2140/pjm.1961.11.679.![]() ![]() ![]() |
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
|
D. Peregrine
, Water waves, nonlinear Schrödinger equations and their solutions, J. Austral. Math. Soc. B, 25 (1983)
, 16-43.
doi: 10.1017/S0334270000003891.![]() ![]() ![]() |
|
L. Rosier
and B.-Y. Zhang
, Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009)
, 972-992.
doi: 10.1137/070709578.![]() ![]() ![]() |
|
D. L. Russell
, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978)
, 639-739.
doi: 10.1137/1020095.![]() ![]() ![]() |
|
D. L. Russell
and B. Y. Zhang
, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31 (1993)
, 659-676.
doi: 10.1137/0331030.![]() ![]() ![]() |
|
D. L. Russell
and B. Y. Zhang
, Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation, J. Math. Anal. Appl., 190 (1995)
, 449-488.
doi: 10.1006/jmaa.1995.1087.![]() ![]() ![]() |
|
W. Strauss
and C. Bu
, Inhomogeneous boundary value problem for a nonlinear Schrödinger equation, J. Diff. Equations, 173 (2001)
, 79-91.
doi: 10.1006/jdeq.2000.3871.![]() ![]() ![]() |
|
S. M. Sun
, The Korteweg-de Vries equation on a periodic domain with singular-point dissipation, SIAM J. Control and Optimization, 34 (1996)
, 892-912.
doi: 10.1137/S0363012994269491.![]() ![]() ![]() |
|
Y. Tsutsumi
, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funk. Ekva., 30 (1987)
, 115-125.
![]() ![]() |
|
V. E. Zakharov
and S. V. Manakov
, On the complete integrability of a nonlinear Schrödinger equation, J. Theore. and Math. Phys., 19 (1974)
, 551-559.
![]() ![]() |
|
V. E. Zakharov
and A. B. Shabat
, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, J. Experi. and Theore. Phys., 34 (1972)
, 62-69.
![]() ![]() |