September  2019, 9(3): 411-424. doi: 10.3934/mcrf.2019019

Optimal control problem for exact synchronization of parabolic system

1. 

School of Mathematics and Statistics, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China

2. 

School of Science, Hebei University of Technology, Tianjin, 300400, China

* Corresponding author: Qishu Yan

Received  December 2016 Revised  September 2017 Published  April 2019

Fund Project: The first author is supported by National Natural Science Foundation of China under grants 11371285 and 11771344. The second author is supported by National Natural Science Foundation of China under grant 11701138.

In this paper, we consider the exact synchronization of a kind of parabolic system and obtain Pontryagin's maximum principle for a related optimal control problem. The method relies on the properties of the null controllability for parabolic system and an observability estimate for a linear parabolic system.

Citation: Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019
References:
[1]

V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984.  Google Scholar

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, New York, 1993.  Google Scholar

[3]

M. A. Demetriou, Synchronization and consensus controllers for a class of parabolic distributed parameter systems, Systems and Control Letters, 62 (2013), 70-76.  doi: 10.1016/j.sysconle.2012.10.010.  Google Scholar

[4]

Ch. Huygens, Oeuvres Complètes, Vol.15, Swets & Zeitlinger B.V., Amsterdam, 1967. Google Scholar

[5]

F. A. KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differential Equations and Applications, 1 (2009), 427-457.  doi: 10.7153/dea-01-24.  Google Scholar

[6]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[7]

T-T. Li and B. P. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls, Chinese Annals of Mathematics - B, 34 (2013), 139-160.  doi: 10.1007/s11401-012-0754-8.  Google Scholar

[8]

T-T. Li and B. P. Rao, Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls, Asymptotic Analysis, 86 (2014), 199-226.   Google Scholar

[9]

T-T. Li and B. P. Rao, On the state of exact synchronization of a coupled system of wave equations, Comptes Rendus Mathématique-Académie des Sciencs-Paris, 352 (2014), 823-829.  doi: 10.1016/j.crma.2014.08.007.  Google Scholar

[10]

T-T. LiB. P. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations, ESAIM: Control, Optimisation and Calculus of Variations, 20 (2014), 339-361.  doi: 10.1051/cocv/2013066.  Google Scholar

[11]

T-T. Li and B. P. Rao, Kalman-type criteria for the approximate controllability and approximate synchronization of a coupled system of wave equations, Comptes Rendus Mathématique-Académie des Sciencs-Paris, 353 (2015), 63-68.  doi: 10.1016/j.crma.2014.10.023.  Google Scholar

[12]

T-T. Li and B. P. Rao, On the exactly synchronizable state to a coupled system of wave equations, Portugaliae Mathematica, 72 (2015), 83-100.  doi: 10.4171/PM/1958.  Google Scholar

[13]

T-T. Li and B. P. Rao, Criteria of Kalman's type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls, SIAM Journal on Control and Optimization, 54 (2016), 49-72.  doi: 10.1137/140989807.  Google Scholar

[14]

X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[15]

H. W. Lou, Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 975-994.  doi: 10.1051/cocv/2010034.  Google Scholar

[16]

S. Strogatz, Sync: The Emerging Science of Spontaneous Order, THEIA, New York, 2003.  Google Scholar

[17]

G. S. Wang and L. J. Wang, State-constrained optimal control governed by non-well-posed parabolic differential equations, SIAM Journal on Control and Optimization, 40 (2002), 1517-1539.  doi: 10.1137/S0363012900377006.  Google Scholar

[18]

N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, MIT Press, Cambridge, 1961.  Google Scholar

[19]

C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific, Singapore, 2007. doi: 10.1142/6570.  Google Scholar

show all references

References:
[1]

V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984.  Google Scholar

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, New York, 1993.  Google Scholar

[3]

M. A. Demetriou, Synchronization and consensus controllers for a class of parabolic distributed parameter systems, Systems and Control Letters, 62 (2013), 70-76.  doi: 10.1016/j.sysconle.2012.10.010.  Google Scholar

[4]

Ch. Huygens, Oeuvres Complètes, Vol.15, Swets & Zeitlinger B.V., Amsterdam, 1967. Google Scholar

[5]

F. A. KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differential Equations and Applications, 1 (2009), 427-457.  doi: 10.7153/dea-01-24.  Google Scholar

[6]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[7]

T-T. Li and B. P. Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls, Chinese Annals of Mathematics - B, 34 (2013), 139-160.  doi: 10.1007/s11401-012-0754-8.  Google Scholar

[8]

T-T. Li and B. P. Rao, Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls, Asymptotic Analysis, 86 (2014), 199-226.   Google Scholar

[9]

T-T. Li and B. P. Rao, On the state of exact synchronization of a coupled system of wave equations, Comptes Rendus Mathématique-Académie des Sciencs-Paris, 352 (2014), 823-829.  doi: 10.1016/j.crma.2014.08.007.  Google Scholar

[10]

T-T. LiB. P. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations, ESAIM: Control, Optimisation and Calculus of Variations, 20 (2014), 339-361.  doi: 10.1051/cocv/2013066.  Google Scholar

[11]

T-T. Li and B. P. Rao, Kalman-type criteria for the approximate controllability and approximate synchronization of a coupled system of wave equations, Comptes Rendus Mathématique-Académie des Sciencs-Paris, 353 (2015), 63-68.  doi: 10.1016/j.crma.2014.10.023.  Google Scholar

[12]

T-T. Li and B. P. Rao, On the exactly synchronizable state to a coupled system of wave equations, Portugaliae Mathematica, 72 (2015), 83-100.  doi: 10.4171/PM/1958.  Google Scholar

[13]

T-T. Li and B. P. Rao, Criteria of Kalman's type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls, SIAM Journal on Control and Optimization, 54 (2016), 49-72.  doi: 10.1137/140989807.  Google Scholar

[14]

X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[15]

H. W. Lou, Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 975-994.  doi: 10.1051/cocv/2010034.  Google Scholar

[16]

S. Strogatz, Sync: The Emerging Science of Spontaneous Order, THEIA, New York, 2003.  Google Scholar

[17]

G. S. Wang and L. J. Wang, State-constrained optimal control governed by non-well-posed parabolic differential equations, SIAM Journal on Control and Optimization, 40 (2002), 1517-1539.  doi: 10.1137/S0363012900377006.  Google Scholar

[18]

N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, MIT Press, Cambridge, 1961.  Google Scholar

[19]

C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific, Singapore, 2007. doi: 10.1142/6570.  Google Scholar

[1]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[2]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[3]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[4]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[7]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[8]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[9]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[10]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[11]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[12]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[13]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[14]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[19]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[20]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (158)
  • HTML views (531)
  • Cited by (1)

Other articles
by authors

[Back to Top]