-
Previous Article
A fully nonlinear free boundary problem arising from optimal dividend and risk control model
- MCRF Home
- This Issue
- Next Article
Optimal control problem for exact synchronization of parabolic system
1. | School of Mathematics and Statistics, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China |
2. | School of Science, Hebei University of Technology, Tianjin, 300400, China |
In this paper, we consider the exact synchronization of a kind of parabolic system and obtain Pontryagin's maximum principle for a related optimal control problem. The method relies on the properties of the null controllability for parabolic system and an observability estimate for a linear parabolic system.
References:
[1] |
V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984. |
[2] |
V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press,
New York, 1993. |
[3] |
M. A. Demetriou,
Synchronization and consensus controllers for a class of parabolic distributed parameter systems, Systems and Control Letters, 62 (2013), 70-76.
doi: 10.1016/j.sysconle.2012.10.010. |
[4] |
Ch. Huygens, Oeuvres Complètes, Vol.15, Swets & Zeitlinger B.V., Amsterdam, 1967. |
[5] |
F. A. Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos,
A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differential Equations and Applications, 1 (2009), 427-457.
doi: 10.7153/dea-01-24. |
[6] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968. |
[7] |
T-T. Li and B. P. Rao,
Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls, Chinese Annals of Mathematics - B, 34 (2013), 139-160.
doi: 10.1007/s11401-012-0754-8. |
[8] |
T-T. Li and B. P. Rao,
Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls, Asymptotic Analysis, 86 (2014), 199-226.
|
[9] |
T-T. Li and B. P. Rao,
On the state of exact synchronization of a coupled system of wave equations, Comptes Rendus Mathématique-Académie des Sciencs-Paris, 352 (2014), 823-829.
doi: 10.1016/j.crma.2014.08.007. |
[10] |
T-T. Li, B. P. Rao and L. Hu,
Exact boundary synchronization for a coupled system of 1-D wave equations, ESAIM: Control, Optimisation and Calculus of Variations, 20 (2014), 339-361.
doi: 10.1051/cocv/2013066. |
[11] |
T-T. Li and B. P. Rao,
Kalman-type criteria for the approximate controllability and approximate synchronization of a coupled system of wave equations, Comptes Rendus Mathématique-Académie des Sciencs-Paris, 353 (2015), 63-68.
doi: 10.1016/j.crma.2014.10.023. |
[12] |
T-T. Li and B. P. Rao,
On the exactly synchronizable state to a coupled system of wave equations, Portugaliae Mathematica, 72 (2015), 83-100.
doi: 10.4171/PM/1958. |
[13] |
T-T. Li and B. P. Rao,
Criteria of Kalman's type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls, SIAM Journal on Control and Optimization, 54 (2016), 49-72.
doi: 10.1137/140989807. |
[14] |
X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[15] |
H. W. Lou,
Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 975-994.
doi: 10.1051/cocv/2010034. |
[16] |
S. Strogatz, Sync: The Emerging Science of Spontaneous Order, THEIA, New York, 2003. |
[17] |
G. S. Wang and L. J. Wang,
State-constrained optimal control governed by non-well-posed parabolic differential equations, SIAM Journal on Control and Optimization, 40 (2002), 1517-1539.
doi: 10.1137/S0363012900377006. |
[18] |
N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine,
MIT Press, Cambridge, 1961. |
[19] |
C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific, Singapore, 2007.
doi: 10.1142/6570. |
show all references
References:
[1] |
V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984. |
[2] |
V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press,
New York, 1993. |
[3] |
M. A. Demetriou,
Synchronization and consensus controllers for a class of parabolic distributed parameter systems, Systems and Control Letters, 62 (2013), 70-76.
doi: 10.1016/j.sysconle.2012.10.010. |
[4] |
Ch. Huygens, Oeuvres Complètes, Vol.15, Swets & Zeitlinger B.V., Amsterdam, 1967. |
[5] |
F. A. Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos,
A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differential Equations and Applications, 1 (2009), 427-457.
doi: 10.7153/dea-01-24. |
[6] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968. |
[7] |
T-T. Li and B. P. Rao,
Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls, Chinese Annals of Mathematics - B, 34 (2013), 139-160.
doi: 10.1007/s11401-012-0754-8. |
[8] |
T-T. Li and B. P. Rao,
Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls, Asymptotic Analysis, 86 (2014), 199-226.
|
[9] |
T-T. Li and B. P. Rao,
On the state of exact synchronization of a coupled system of wave equations, Comptes Rendus Mathématique-Académie des Sciencs-Paris, 352 (2014), 823-829.
doi: 10.1016/j.crma.2014.08.007. |
[10] |
T-T. Li, B. P. Rao and L. Hu,
Exact boundary synchronization for a coupled system of 1-D wave equations, ESAIM: Control, Optimisation and Calculus of Variations, 20 (2014), 339-361.
doi: 10.1051/cocv/2013066. |
[11] |
T-T. Li and B. P. Rao,
Kalman-type criteria for the approximate controllability and approximate synchronization of a coupled system of wave equations, Comptes Rendus Mathématique-Académie des Sciencs-Paris, 353 (2015), 63-68.
doi: 10.1016/j.crma.2014.10.023. |
[12] |
T-T. Li and B. P. Rao,
On the exactly synchronizable state to a coupled system of wave equations, Portugaliae Mathematica, 72 (2015), 83-100.
doi: 10.4171/PM/1958. |
[13] |
T-T. Li and B. P. Rao,
Criteria of Kalman's type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls, SIAM Journal on Control and Optimization, 54 (2016), 49-72.
doi: 10.1137/140989807. |
[14] |
X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[15] |
H. W. Lou,
Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 975-994.
doi: 10.1051/cocv/2010034. |
[16] |
S. Strogatz, Sync: The Emerging Science of Spontaneous Order, THEIA, New York, 2003. |
[17] |
G. S. Wang and L. J. Wang,
State-constrained optimal control governed by non-well-posed parabolic differential equations, SIAM Journal on Control and Optimization, 40 (2002), 1517-1539.
doi: 10.1137/S0363012900377006. |
[18] |
N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine,
MIT Press, Cambridge, 1961. |
[19] |
C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific, Singapore, 2007.
doi: 10.1142/6570. |
[1] |
Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021059 |
[2] |
Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 |
[3] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110 |
[4] |
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 |
[5] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[6] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[7] |
Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893 |
[8] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[9] |
H. O. Fattorini. The maximum principle in infinite dimension. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557 |
[10] |
Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161 |
[11] |
Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure and Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024 |
[12] |
Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499 |
[13] |
Chiun-Chuan Chen, Ting-Yang Hsiao, Li-Chang Hung. Discrete N-barrier maximum principle for a lattice dynamical system arising in competition models. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 153-187. doi: 10.3934/dcds.2020007 |
[14] |
Tian Chen, Zhen Wu. A general maximum principle for partially observed mean-field stochastic system with random jumps in progressive structure. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022012 |
[15] |
Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure and Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881 |
[16] |
Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control and Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143 |
[17] |
Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7 |
[18] |
Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639 |
[19] |
Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291 |
[20] |
Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]