-
Previous Article
A stochastic maximum principle for linear quadratic problem with nonconvex control domain
- MCRF Home
- This Issue
-
Next Article
A fully nonlinear free boundary problem arising from optimal dividend and risk control model
Controllability for a string with attached masses and Riesz bases for asymmetric spaces
1. | Department of Mathematics and Statistics, University of Alaska at Fairbanks, Fairbanks, AK 99775, USA |
2. | Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA |
We consider the problem of boundary control for a vibrating string with $N$ interior point masses. We assume the control of Dirichlet, or Neumann, or mixed type is at the left end, and the string is fixed at the right end. Singularities in waves are "smoothed" out to one order as they cross a point mass. We characterize the reachable set for an $L^2$ control. The control problem is reduced to a moment problem, which is then solved using the theory of exponential divided differences in tandem with unique shape and velocity controllability results. The results are sharp with respect to both the regularity of the solution and with respect to time. The eigenfunctions of the associated Sturm--Liouville problem are used to construct Riesz bases for a family of asymmetric spaces that include the sets of reachable positions and velocities.
References:
[1] |
F. Al-Musallam, S. A. Avdonin, N. Avdonina and J. Edward, Control and inverse problems for networks of vibrating strings with attached masses, Nanosystems: Physics, Chemistry, and Mathematics, 7 (2016), 835-841. Google Scholar |
[2] |
S. A. Avdonin, On the question of Riesz bases of exponential functions in $L^2$, Vestnik Leningrad Univ. Math., 7 (1979), 203-211. Google Scholar |
[3] |
S. A. Avdonin, N. Avdonina and J. Edward,
Boundary inverse problems for networks of vibrating strings with attached masses, Proceedings of Dynamic Systems and Applications, 7 (2016), 41-44.
|
[4] |
S. A. Avdonin, M. I. Belishev and S. A. Ivanov,
Matrix inverse problem for the equation $u_tt - u_xx + Q(x)u = 0$, Math. USSR Sbornik, 7 (1992), 287-310.
doi: 10.1070/SM1992v072n02ABEH002141. |
[5] |
S. A. Avdonin, A. Choque and L. de Teresa,
Exact boundary controllability of coupled hyperbolic equations, Int. J. Appl. Math. Comp. Sci., 23 (2013), 701-709.
doi: 10.2478/amcs-2013-0052. |
[6] |
S. A. Avdonin and J. Edward,
Exact controllability for string with attached masses, SIAM J. Optim. Cont., 56 (2018), 945-980.
doi: 10.1137/15M1029333. |
[7] |
S. A. Avdonin and J. Edward, Spectral Clusters, Asymmetric Spaces, and Boundary Control for Schrödinger Equation with Strong Singularities, to be published in Operator Theory: Advances and Applications. Google Scholar |
[8] |
S. A. Avdonin and J. Edward,, work in progress. Google Scholar |
[9] |
S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, London, Melbourne, 1995.
![]() |
[10] |
S. A. Avdonin and S. A. Ivanov,
Exponential Riesz bases of subspaces and divided differences, St. Petersburg Mathematical Journal, 13 (2001), 339-351.
|
[11] |
S. A. Avdonin, S. Lenhart and V. Protopopescu,
Solving the dynamical inverse problem for the Schrödinger equation by the Boundary Control method, Inverse Problems, 18 (2002), 349-361.
doi: 10.1088/0266-5611/18/2/304. |
[12] |
S. A. Avdonin and P. Kurasov,
Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21.
doi: 10.3934/ipi.2008.2.1. |
[13] |
S. A. Avdonin and V. Mikhaylov, The boundary control approach to inverse spectral theory, Inverse Problems, 26 (2010), 045009, 19 pp.
doi: 10.1088/0266-5611/26/4/045009. |
[14] |
S. A. Avdonin and W. Moran,
Ingham type inequalities and Riesz bases of divided differences, International Journal of Applied Math. and Computer Science, 11 (2001), 803-820.
|
[15] |
S. A. Avdonin, J. Park and L. de Teresa, Controllability of coupled hyperbolic equations in asymmetric spaces, submitted. Google Scholar |
[16] |
C. Baiocchi, V. Komornik and P. Loreti,
Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.
doi: 10.1023/A:1020806811956. |
[17] |
M. I. Belishev and A. F. Vakulenko,
Inverse problems on graphs: Recovering the tree of strings by the BC-method, J. Inv. Ill-Posed Problems, 14 (2006), 29-46.
doi: 10.1515/156939406776237474. |
[18] |
J. Ben Amara and E. Beldi, Boundary controllability of two vibrating strings connected by interior point mass with variable coefficients, preprint. arXiv: 1706.04246 Google Scholar |
[19] |
J. Ben Amara and E. Beldi, Neumann boundary controllability of two vibrating strings connected by a point mass with variable coefficients, preprint. Google Scholar |
[20] |
C. Castro,
Asymptotic analysis and control of a hybrid system composed by two vibrating strings connected by a point mass, ESAIM: Control, Optimization and Calculus of Variations, 2 (1997), 231-280.
doi: 10.1051/cocv:1997108. |
[21] |
C. Castro and E. Zuazua,
Une remarque sur les séries de Fourier non-harmoniques et son application â la contrôlabilité des cordes avec densité singulière, C. R. Acad. Sci. Paris Ser. I. Math., 323 (1996), 365-370.
|
[22] |
C. Castro and E. Zuazua,
Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass, SIAM J. Control and Optimization, 36 (1998), 1576-1595.
doi: 10.1137/S0363012997316378. |
[23] |
R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume II, Interscience Publishers, New York, London, and Sydney, 1962. |
[24] |
R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, in Mathematiques and Applications (Berlin), 50. Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[25] |
S. Ervedoza and E. Zuazua,
A systematic method for building smooth controls for smooth data, Discrete and Continuous Dyn. Systems, 14 (2010), 1375-1401.
doi: 10.3934/dcdsb.2010.14.1375. |
[26] |
Z. J. Han and G. Q. Xu,
Output feedback stabilization of a tree-shaped network of vibrating strings with non-collocated observation, Internat. J. Control, 84 (2011), 458-475.
doi: 10.1080/00207179.2011.561441. |
[27] |
S. Hansen, Exact Boundary Controllability of a Schrödinger Equation with an Internal Point Mass, American Control Conference (ACC), 2017, IEEE.
doi: 10.23919/ACC.2017.7963538. |
[28] |
S. Hansen and E. Zuazua,
Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim., 33 (1995), 1357-1391.
doi: 10.1137/S0363012993248347. |
[29] |
E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. |
[30] |
B. Ja. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, RI, 1964. |
[31] |
J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modelling, Analysis, and Control of Dynamical Elastic Multilink Structures, Birkhauser, Basel, 1994.
doi: 10.1007/978-1-4612-0273-8. |
[32] |
J. Martinez, Modeling and Controllability of a Heat Equation with a Point Mass, Ph.D.Thesis, Iowa State University. 2015. 94 pp. ISBN: 978-1339-45983-7. |
[33] |
D. Mercier and V. Regnier,
Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses, Collect. Math., 60 (2009), 307-334.
doi: 10.1007/BF03191374. |
[34] |
H. Mounier, J. Rudolph, M. Fliess and P. Rouchon,
Tracking control of a vibrating string with an interior mass viewed as delay system., ESAIM Control Optim. Calc. Var., 3 (1998), 315-321.
doi: 10.1051/cocv:1998112. |
[35] |
A. A. Samarski and A. N. Tikhonov, Equations of Mathematical Physics, Dover Publications, N.Y. 1990. |
[36] |
D. Ullrich,
Divided differences and systems of nonharmonic Fourier series, Proc. AMS, 80 (1980), 47-57.
doi: 10.1090/S0002-9939-1980-0574507-8. |
show all references
References:
[1] |
F. Al-Musallam, S. A. Avdonin, N. Avdonina and J. Edward, Control and inverse problems for networks of vibrating strings with attached masses, Nanosystems: Physics, Chemistry, and Mathematics, 7 (2016), 835-841. Google Scholar |
[2] |
S. A. Avdonin, On the question of Riesz bases of exponential functions in $L^2$, Vestnik Leningrad Univ. Math., 7 (1979), 203-211. Google Scholar |
[3] |
S. A. Avdonin, N. Avdonina and J. Edward,
Boundary inverse problems for networks of vibrating strings with attached masses, Proceedings of Dynamic Systems and Applications, 7 (2016), 41-44.
|
[4] |
S. A. Avdonin, M. I. Belishev and S. A. Ivanov,
Matrix inverse problem for the equation $u_tt - u_xx + Q(x)u = 0$, Math. USSR Sbornik, 7 (1992), 287-310.
doi: 10.1070/SM1992v072n02ABEH002141. |
[5] |
S. A. Avdonin, A. Choque and L. de Teresa,
Exact boundary controllability of coupled hyperbolic equations, Int. J. Appl. Math. Comp. Sci., 23 (2013), 701-709.
doi: 10.2478/amcs-2013-0052. |
[6] |
S. A. Avdonin and J. Edward,
Exact controllability for string with attached masses, SIAM J. Optim. Cont., 56 (2018), 945-980.
doi: 10.1137/15M1029333. |
[7] |
S. A. Avdonin and J. Edward, Spectral Clusters, Asymmetric Spaces, and Boundary Control for Schrödinger Equation with Strong Singularities, to be published in Operator Theory: Advances and Applications. Google Scholar |
[8] |
S. A. Avdonin and J. Edward,, work in progress. Google Scholar |
[9] |
S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, London, Melbourne, 1995.
![]() |
[10] |
S. A. Avdonin and S. A. Ivanov,
Exponential Riesz bases of subspaces and divided differences, St. Petersburg Mathematical Journal, 13 (2001), 339-351.
|
[11] |
S. A. Avdonin, S. Lenhart and V. Protopopescu,
Solving the dynamical inverse problem for the Schrödinger equation by the Boundary Control method, Inverse Problems, 18 (2002), 349-361.
doi: 10.1088/0266-5611/18/2/304. |
[12] |
S. A. Avdonin and P. Kurasov,
Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21.
doi: 10.3934/ipi.2008.2.1. |
[13] |
S. A. Avdonin and V. Mikhaylov, The boundary control approach to inverse spectral theory, Inverse Problems, 26 (2010), 045009, 19 pp.
doi: 10.1088/0266-5611/26/4/045009. |
[14] |
S. A. Avdonin and W. Moran,
Ingham type inequalities and Riesz bases of divided differences, International Journal of Applied Math. and Computer Science, 11 (2001), 803-820.
|
[15] |
S. A. Avdonin, J. Park and L. de Teresa, Controllability of coupled hyperbolic equations in asymmetric spaces, submitted. Google Scholar |
[16] |
C. Baiocchi, V. Komornik and P. Loreti,
Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.
doi: 10.1023/A:1020806811956. |
[17] |
M. I. Belishev and A. F. Vakulenko,
Inverse problems on graphs: Recovering the tree of strings by the BC-method, J. Inv. Ill-Posed Problems, 14 (2006), 29-46.
doi: 10.1515/156939406776237474. |
[18] |
J. Ben Amara and E. Beldi, Boundary controllability of two vibrating strings connected by interior point mass with variable coefficients, preprint. arXiv: 1706.04246 Google Scholar |
[19] |
J. Ben Amara and E. Beldi, Neumann boundary controllability of two vibrating strings connected by a point mass with variable coefficients, preprint. Google Scholar |
[20] |
C. Castro,
Asymptotic analysis and control of a hybrid system composed by two vibrating strings connected by a point mass, ESAIM: Control, Optimization and Calculus of Variations, 2 (1997), 231-280.
doi: 10.1051/cocv:1997108. |
[21] |
C. Castro and E. Zuazua,
Une remarque sur les séries de Fourier non-harmoniques et son application â la contrôlabilité des cordes avec densité singulière, C. R. Acad. Sci. Paris Ser. I. Math., 323 (1996), 365-370.
|
[22] |
C. Castro and E. Zuazua,
Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass, SIAM J. Control and Optimization, 36 (1998), 1576-1595.
doi: 10.1137/S0363012997316378. |
[23] |
R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume II, Interscience Publishers, New York, London, and Sydney, 1962. |
[24] |
R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, in Mathematiques and Applications (Berlin), 50. Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[25] |
S. Ervedoza and E. Zuazua,
A systematic method for building smooth controls for smooth data, Discrete and Continuous Dyn. Systems, 14 (2010), 1375-1401.
doi: 10.3934/dcdsb.2010.14.1375. |
[26] |
Z. J. Han and G. Q. Xu,
Output feedback stabilization of a tree-shaped network of vibrating strings with non-collocated observation, Internat. J. Control, 84 (2011), 458-475.
doi: 10.1080/00207179.2011.561441. |
[27] |
S. Hansen, Exact Boundary Controllability of a Schrödinger Equation with an Internal Point Mass, American Control Conference (ACC), 2017, IEEE.
doi: 10.23919/ACC.2017.7963538. |
[28] |
S. Hansen and E. Zuazua,
Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim., 33 (1995), 1357-1391.
doi: 10.1137/S0363012993248347. |
[29] |
E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. |
[30] |
B. Ja. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, RI, 1964. |
[31] |
J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modelling, Analysis, and Control of Dynamical Elastic Multilink Structures, Birkhauser, Basel, 1994.
doi: 10.1007/978-1-4612-0273-8. |
[32] |
J. Martinez, Modeling and Controllability of a Heat Equation with a Point Mass, Ph.D.Thesis, Iowa State University. 2015. 94 pp. ISBN: 978-1339-45983-7. |
[33] |
D. Mercier and V. Regnier,
Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses, Collect. Math., 60 (2009), 307-334.
doi: 10.1007/BF03191374. |
[34] |
H. Mounier, J. Rudolph, M. Fliess and P. Rouchon,
Tracking control of a vibrating string with an interior mass viewed as delay system., ESAIM Control Optim. Calc. Var., 3 (1998), 315-321.
doi: 10.1051/cocv:1998112. |
[35] |
A. A. Samarski and A. N. Tikhonov, Equations of Mathematical Physics, Dover Publications, N.Y. 1990. |
[36] |
D. Ullrich,
Divided differences and systems of nonharmonic Fourier series, Proc. AMS, 80 (1980), 47-57.
doi: 10.1090/S0002-9939-1980-0574507-8. |
[1] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[2] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[3] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[4] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[5] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[6] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[7] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[8] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[9] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[10] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[11] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[12] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[13] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[14] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[15] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]