September  2019, 9(3): 509-515. doi: 10.3934/mcrf.2019023

Determining the shape of a solid of revolution

Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA

Received  June 2017 Revised  May 2018 Published  April 2019

We show how to reconstruct the shape of a solid of revolution by measuring its temperature on the boundary. This inverse problem reduces to finding a coefficient of a parabolic equation from values of the trace of its solution on the boundary. This is achieved by using the inverse spectral theory of the string, as developed by M.G. Krein, which provides uniqueness and also a reconstruction algorithm.

Citation: Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023
References:
[1]

S. A. AvdoninV.S. Mikhaylov and K. Ramdani, Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements, IMA J. Math. Control Inform., 31 (2014), 137-150.  doi: 10.1093/imamci/dnt009.  Google Scholar

[2]

S. A. Avdonin and V.S. Mikhaylov, Spectral estimation problem in infinite dimensional spaces. Zap. Nauchn. Semin. POMI, 422, 5-18, 2014, J. Math. Sci. (N.Y.), 206 (2015), 3,231–240. doi: 10.1007/s10958-015-2307-7.  Google Scholar

[3]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Amer. Math. Soc., 138 (2010), 11, 3911–3921. doi: 10.1090/S0002-9939-2010-10297-6.  Google Scholar

[4]

A. Boumenir and Vu Kim Tuan, Recovery of the heat coefficient by two measurements, Inverse Problems and Imaging, 5 (2011), 4,775–791. doi: 10.3934/ipi.2011.5.775.  Google Scholar

[5]

A. Boumenir and Vu Kim Tuan, Recovery of the heat equation from a single boundary measurement, Applicable Analysis, 10 (2018), 1667-1676.  doi: 10.1080/00036811.2017.1332760.  Google Scholar

[6]

S. J. CoxM. Embree and J.M. Hokanson, One can hear the composition of a string: experiments with an inverse eigenvalue problem, SIAM Rev., 54 (2012), 157-178.  doi: 10.1137/080731037.  Google Scholar

[7]

H. Dym, and H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Dover, 2008.  Google Scholar

[8]

I. S. Kac, and M.G. Krein, On the spectral functions of the String, Amer. Math. Soc., Transl., (2), 103 (1974), 19–102. doi: 10.1090/trans2/103/02.  Google Scholar

[9]

V. A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, Six Papers in Analysis, Amer. Math. Soc.(2), 101 (1973), 1–104.  Google Scholar

[10]

A. I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Chapman Hall/CRC, Pure and Applied Mathematics, (2000).  Google Scholar

[11]

G. Turchetti and G. Sagretti, Stieltjes Functions and Approximation Solutions of an Inverse Problem., Springer Lect. Notes Phys., 85 (1978) 123–33.  Google Scholar

[12]

L. Yang. J.N. Yu. Z.C. Deng, An inverse problem of identifying the coefficient of parabolic equation, Applied Mathematical Modeling, 32 10, (2008), 1984–1995. doi: 10.1016/j.apm.2007.06.025.  Google Scholar

show all references

References:
[1]

S. A. AvdoninV.S. Mikhaylov and K. Ramdani, Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements, IMA J. Math. Control Inform., 31 (2014), 137-150.  doi: 10.1093/imamci/dnt009.  Google Scholar

[2]

S. A. Avdonin and V.S. Mikhaylov, Spectral estimation problem in infinite dimensional spaces. Zap. Nauchn. Semin. POMI, 422, 5-18, 2014, J. Math. Sci. (N.Y.), 206 (2015), 3,231–240. doi: 10.1007/s10958-015-2307-7.  Google Scholar

[3]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Amer. Math. Soc., 138 (2010), 11, 3911–3921. doi: 10.1090/S0002-9939-2010-10297-6.  Google Scholar

[4]

A. Boumenir and Vu Kim Tuan, Recovery of the heat coefficient by two measurements, Inverse Problems and Imaging, 5 (2011), 4,775–791. doi: 10.3934/ipi.2011.5.775.  Google Scholar

[5]

A. Boumenir and Vu Kim Tuan, Recovery of the heat equation from a single boundary measurement, Applicable Analysis, 10 (2018), 1667-1676.  doi: 10.1080/00036811.2017.1332760.  Google Scholar

[6]

S. J. CoxM. Embree and J.M. Hokanson, One can hear the composition of a string: experiments with an inverse eigenvalue problem, SIAM Rev., 54 (2012), 157-178.  doi: 10.1137/080731037.  Google Scholar

[7]

H. Dym, and H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Dover, 2008.  Google Scholar

[8]

I. S. Kac, and M.G. Krein, On the spectral functions of the String, Amer. Math. Soc., Transl., (2), 103 (1974), 19–102. doi: 10.1090/trans2/103/02.  Google Scholar

[9]

V. A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, Six Papers in Analysis, Amer. Math. Soc.(2), 101 (1973), 1–104.  Google Scholar

[10]

A. I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Chapman Hall/CRC, Pure and Applied Mathematics, (2000).  Google Scholar

[11]

G. Turchetti and G. Sagretti, Stieltjes Functions and Approximation Solutions of an Inverse Problem., Springer Lect. Notes Phys., 85 (1978) 123–33.  Google Scholar

[12]

L. Yang. J.N. Yu. Z.C. Deng, An inverse problem of identifying the coefficient of parabolic equation, Applied Mathematical Modeling, 32 10, (2008), 1984–1995. doi: 10.1016/j.apm.2007.06.025.  Google Scholar

[1]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[2]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[8]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[9]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[12]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[13]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[14]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[18]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (72)
  • HTML views (519)
  • Cited by (0)

Other articles
by authors

[Back to Top]