September  2019, 9(3): 509-515. doi: 10.3934/mcrf.2019023

Determining the shape of a solid of revolution

Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA

Received  June 2017 Revised  May 2018 Published  April 2019

We show how to reconstruct the shape of a solid of revolution by measuring its temperature on the boundary. This inverse problem reduces to finding a coefficient of a parabolic equation from values of the trace of its solution on the boundary. This is achieved by using the inverse spectral theory of the string, as developed by M.G. Krein, which provides uniqueness and also a reconstruction algorithm.

Citation: Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023
References:
[1]

S. A. AvdoninV.S. Mikhaylov and K. Ramdani, Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements, IMA J. Math. Control Inform., 31 (2014), 137-150.  doi: 10.1093/imamci/dnt009.  Google Scholar

[2]

S. A. Avdonin and V.S. Mikhaylov, Spectral estimation problem in infinite dimensional spaces. Zap. Nauchn. Semin. POMI, 422, 5-18, 2014, J. Math. Sci. (N.Y.), 206 (2015), 3,231–240. doi: 10.1007/s10958-015-2307-7.  Google Scholar

[3]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Amer. Math. Soc., 138 (2010), 11, 3911–3921. doi: 10.1090/S0002-9939-2010-10297-6.  Google Scholar

[4]

A. Boumenir and Vu Kim Tuan, Recovery of the heat coefficient by two measurements, Inverse Problems and Imaging, 5 (2011), 4,775–791. doi: 10.3934/ipi.2011.5.775.  Google Scholar

[5]

A. Boumenir and Vu Kim Tuan, Recovery of the heat equation from a single boundary measurement, Applicable Analysis, 10 (2018), 1667-1676.  doi: 10.1080/00036811.2017.1332760.  Google Scholar

[6]

S. J. CoxM. Embree and J.M. Hokanson, One can hear the composition of a string: experiments with an inverse eigenvalue problem, SIAM Rev., 54 (2012), 157-178.  doi: 10.1137/080731037.  Google Scholar

[7]

H. Dym, and H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Dover, 2008.  Google Scholar

[8]

I. S. Kac, and M.G. Krein, On the spectral functions of the String, Amer. Math. Soc., Transl., (2), 103 (1974), 19–102. doi: 10.1090/trans2/103/02.  Google Scholar

[9]

V. A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, Six Papers in Analysis, Amer. Math. Soc.(2), 101 (1973), 1–104.  Google Scholar

[10]

A. I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Chapman Hall/CRC, Pure and Applied Mathematics, (2000).  Google Scholar

[11]

G. Turchetti and G. Sagretti, Stieltjes Functions and Approximation Solutions of an Inverse Problem., Springer Lect. Notes Phys., 85 (1978) 123–33.  Google Scholar

[12]

L. Yang. J.N. Yu. Z.C. Deng, An inverse problem of identifying the coefficient of parabolic equation, Applied Mathematical Modeling, 32 10, (2008), 1984–1995. doi: 10.1016/j.apm.2007.06.025.  Google Scholar

show all references

References:
[1]

S. A. AvdoninV.S. Mikhaylov and K. Ramdani, Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements, IMA J. Math. Control Inform., 31 (2014), 137-150.  doi: 10.1093/imamci/dnt009.  Google Scholar

[2]

S. A. Avdonin and V.S. Mikhaylov, Spectral estimation problem in infinite dimensional spaces. Zap. Nauchn. Semin. POMI, 422, 5-18, 2014, J. Math. Sci. (N.Y.), 206 (2015), 3,231–240. doi: 10.1007/s10958-015-2307-7.  Google Scholar

[3]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Amer. Math. Soc., 138 (2010), 11, 3911–3921. doi: 10.1090/S0002-9939-2010-10297-6.  Google Scholar

[4]

A. Boumenir and Vu Kim Tuan, Recovery of the heat coefficient by two measurements, Inverse Problems and Imaging, 5 (2011), 4,775–791. doi: 10.3934/ipi.2011.5.775.  Google Scholar

[5]

A. Boumenir and Vu Kim Tuan, Recovery of the heat equation from a single boundary measurement, Applicable Analysis, 10 (2018), 1667-1676.  doi: 10.1080/00036811.2017.1332760.  Google Scholar

[6]

S. J. CoxM. Embree and J.M. Hokanson, One can hear the composition of a string: experiments with an inverse eigenvalue problem, SIAM Rev., 54 (2012), 157-178.  doi: 10.1137/080731037.  Google Scholar

[7]

H. Dym, and H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Dover, 2008.  Google Scholar

[8]

I. S. Kac, and M.G. Krein, On the spectral functions of the String, Amer. Math. Soc., Transl., (2), 103 (1974), 19–102. doi: 10.1090/trans2/103/02.  Google Scholar

[9]

V. A. Marchenko, Some questions in the theory of one-dimensional linear differential operators of the second order, Six Papers in Analysis, Amer. Math. Soc.(2), 101 (1973), 1–104.  Google Scholar

[10]

A. I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Chapman Hall/CRC, Pure and Applied Mathematics, (2000).  Google Scholar

[11]

G. Turchetti and G. Sagretti, Stieltjes Functions and Approximation Solutions of an Inverse Problem., Springer Lect. Notes Phys., 85 (1978) 123–33.  Google Scholar

[12]

L. Yang. J.N. Yu. Z.C. Deng, An inverse problem of identifying the coefficient of parabolic equation, Applied Mathematical Modeling, 32 10, (2008), 1984–1995. doi: 10.1016/j.apm.2007.06.025.  Google Scholar

[1]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[2]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[4]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[7]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[8]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[9]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[10]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[11]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[12]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[13]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[14]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[15]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[16]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[17]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[18]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[19]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[20]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (85)
  • HTML views (521)
  • Cited by (0)

Other articles
by authors

[Back to Top]