September  2019, 9(3): 517-539. doi: 10.3934/mcrf.2019024

Discretized feedback control for systems of linearized hyperbolic balance laws

RWTH Aachen University, IGPM, Templergraben 55, 52062 Aachen, Germany

Received  July 2017 Revised  August 2018 Published  April 2019

Fund Project: This work is supported by DFG HE5386/13-15.

Physical systems such as water and gas networks are usually operated in a state of equilibrium and feedback control is employed to damp small perturbations over time. We consider flow problems on networks, described by hyperbolic balance laws, and analyze the stability of the linearized systems. Sufficient conditions for exponential stability in the continuous and discretized setting are presented. The analysis is extended to arbitrary Sobolev norms. Computational experiments illustrate the theoretical findings.

Citation: Stephan Gerster, Michael Herty. Discretized feedback control for systems of linearized hyperbolic balance laws. Mathematical Control & Related Fields, 2019, 9 (3) : 517-539. doi: 10.3934/mcrf.2019024
References:
[1]

M. K. Banda and M. Herty, Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws, Mathematical Control and Related Fields, 3 (2013), 121-142.  doi: 10.3934/mcrf.2013.3.121.  Google Scholar

[2]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Networks and Heterogeneous Media, 1 (2006), 41-56.  doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

G. P. BarkerA. Berman and R. J. Plemmons, Positive diagonal solutions to the Lyapunov equations, Linear and Multilinear Algebra, 5 (1978), 249-256.  doi: 10.1080/03081087808817203.  Google Scholar

[4]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-d Hyperbolic Systems, 1st edition, Progress in nonlinear differential equations and their applications, Birkhäuser, Switzerland, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[5]

J.-M. Coron, Local controllability of a 1-d tank containing a fluid modeled by the shallow water equations, ESAIM: Control, Optim. and Calculus of Variations, 8 (2002), 513-554.  doi: 10.1051/cocv:2002050.  Google Scholar

[6]

J.-M. Coron, Control and Nonlinearity, vol. 136 of Mathematical surveys and monographs, Providence, RI, 2007.  Google Scholar

[7]

J.-M. Coron and G. Bastin, Dissipative boundary conditions for one-dimensional quasilinear hyperbolic systems: Lyapunov stability for the $C^1$-norm, SIAM Journal on Control and Optimization, 53 (2015), 1464-1483.  doi: 10.1137/14097080X.  Google Scholar

[8]

J.-M. CoronG. Bastin and B. d'Andréa-Novel, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Transactions on Automatic Control, 52 (2007), 2-11.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[9]

J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Boundary feedback control and Lyapunov stability analysis for physical networks of 2$\times$2 hyperbolic balance laws, Proceedings of the 47th IEEE Conference on decision and Control, (2008), 1454-1458. Google Scholar

[10]

J.-M. CoronG. Bastin and B. d'Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM Journal on Control and Optimization, 47 (2008), 1460-1498.  doi: 10.1137/070706847.  Google Scholar

[11]

J.-M. CoronG. Bastin and B. d'Andréa-Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel, Networks and Heterog. Media, 4 (2009), 177-187.  doi: 10.3934/nhm.2009.4.177.  Google Scholar

[12]

J.-M. CoronG. BastinB. d'Andréa-Novel and B. Haut, Lyapunov stability analysis of networks of scalar conservation laws, Networks and Heterogeneous Media, 2 (2007), 751-759.  doi: 10.3934/nhm.2007.2.751.  Google Scholar

[13]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, A series of comprehensive studies in mathematics, Springer, Providence, RI, 2010. doi: 10.1007/978-3-642-04048-1.  Google Scholar

[14]

J. de HalleuxC. PrieurJ.-M. CoronB. d'Andréa-Novel and G. Bastin, Boundary feedback control in networks of open channels, Automatica, 39 (2003), 1365-1376.  doi: 10.1016/S0005-1098(03)00109-2.  Google Scholar

[15]

M. DickM. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Networks and Heterogeneous Media, 5 (2010), 691-709.  doi: 10.3934/nhm.2010.5.691.  Google Scholar

[16]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optim. and Calculus of Variations, 17 (2011), 28-51.  doi: 10.1051/cocv/2009035.  Google Scholar

[17]

M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations between steady states, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 20 (2003), 1-11.  doi: 10.1016/S0294-1449(02)00004-5.  Google Scholar

[18]

M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 257-270.  doi: 10.1016/j.anihpc.2008.01.002.  Google Scholar

[19]

M. GugatG. Leugering and G. Schmidt, Global controllability between steady supercritical flows in channel networks, Mathematical Methods in the Applied Science, 27 (2004), 781-802.  doi: 10.1002/mma.471.  Google Scholar

[20]

M. GugatG. LeugeringS. Tamasoiu and K. Wang, $H^2$-stabilization of the isothermal Euler equations: A Lyapunov function approach, Chin. Ann. Math., 33 (2012), 479-500.  doi: 10.1007/s11401-012-0727-y.  Google Scholar

[21]

M. GugatL. Rosier and V. Perrollaz, Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms, Journal of Evolution Equations, 18 (2018), 1471-1500.  doi: 10.1007/s00028-018-0449-z.  Google Scholar

[22]

H. K. Khalil, Nonlinear Control, Pearson Education, 2015. Google Scholar

[23]

G. Leugering and G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM Journal on Control and Optimization, 41 (2002), 164-180.  doi: 10.1137/S0363012900375664.  Google Scholar

[24] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 1st edition, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.  doi: 10.1017/CBO9780511791253.  Google Scholar
[25]

P. Schillen and S. Göttlich, Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization, European Journal of Control, 35 (2017), 11-18.  doi: 10.1016/j.ejcon.2017.02.002.  Google Scholar

[26]

A. Zlotnik, M. Chertkov and S. Backhaus, Optimal control of transient flow in natural gas networks, 54th IEEE Conference on Decision and Control (CDC), (2015), 4563-4570. doi: 10.1109/CDC.2015.7402932.  Google Scholar

show all references

References:
[1]

M. K. Banda and M. Herty, Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws, Mathematical Control and Related Fields, 3 (2013), 121-142.  doi: 10.3934/mcrf.2013.3.121.  Google Scholar

[2]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Networks and Heterogeneous Media, 1 (2006), 41-56.  doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

G. P. BarkerA. Berman and R. J. Plemmons, Positive diagonal solutions to the Lyapunov equations, Linear and Multilinear Algebra, 5 (1978), 249-256.  doi: 10.1080/03081087808817203.  Google Scholar

[4]

G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-d Hyperbolic Systems, 1st edition, Progress in nonlinear differential equations and their applications, Birkhäuser, Switzerland, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[5]

J.-M. Coron, Local controllability of a 1-d tank containing a fluid modeled by the shallow water equations, ESAIM: Control, Optim. and Calculus of Variations, 8 (2002), 513-554.  doi: 10.1051/cocv:2002050.  Google Scholar

[6]

J.-M. Coron, Control and Nonlinearity, vol. 136 of Mathematical surveys and monographs, Providence, RI, 2007.  Google Scholar

[7]

J.-M. Coron and G. Bastin, Dissipative boundary conditions for one-dimensional quasilinear hyperbolic systems: Lyapunov stability for the $C^1$-norm, SIAM Journal on Control and Optimization, 53 (2015), 1464-1483.  doi: 10.1137/14097080X.  Google Scholar

[8]

J.-M. CoronG. Bastin and B. d'Andréa-Novel, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Transactions on Automatic Control, 52 (2007), 2-11.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[9]

J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Boundary feedback control and Lyapunov stability analysis for physical networks of 2$\times$2 hyperbolic balance laws, Proceedings of the 47th IEEE Conference on decision and Control, (2008), 1454-1458. Google Scholar

[10]

J.-M. CoronG. Bastin and B. d'Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM Journal on Control and Optimization, 47 (2008), 1460-1498.  doi: 10.1137/070706847.  Google Scholar

[11]

J.-M. CoronG. Bastin and B. d'Andréa-Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel, Networks and Heterog. Media, 4 (2009), 177-187.  doi: 10.3934/nhm.2009.4.177.  Google Scholar

[12]

J.-M. CoronG. BastinB. d'Andréa-Novel and B. Haut, Lyapunov stability analysis of networks of scalar conservation laws, Networks and Heterogeneous Media, 2 (2007), 751-759.  doi: 10.3934/nhm.2007.2.751.  Google Scholar

[13]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, A series of comprehensive studies in mathematics, Springer, Providence, RI, 2010. doi: 10.1007/978-3-642-04048-1.  Google Scholar

[14]

J. de HalleuxC. PrieurJ.-M. CoronB. d'Andréa-Novel and G. Bastin, Boundary feedback control in networks of open channels, Automatica, 39 (2003), 1365-1376.  doi: 10.1016/S0005-1098(03)00109-2.  Google Scholar

[15]

M. DickM. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Networks and Heterogeneous Media, 5 (2010), 691-709.  doi: 10.3934/nhm.2010.5.691.  Google Scholar

[16]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optim. and Calculus of Variations, 17 (2011), 28-51.  doi: 10.1051/cocv/2009035.  Google Scholar

[17]

M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations between steady states, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 20 (2003), 1-11.  doi: 10.1016/S0294-1449(02)00004-5.  Google Scholar

[18]

M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 257-270.  doi: 10.1016/j.anihpc.2008.01.002.  Google Scholar

[19]

M. GugatG. Leugering and G. Schmidt, Global controllability between steady supercritical flows in channel networks, Mathematical Methods in the Applied Science, 27 (2004), 781-802.  doi: 10.1002/mma.471.  Google Scholar

[20]

M. GugatG. LeugeringS. Tamasoiu and K. Wang, $H^2$-stabilization of the isothermal Euler equations: A Lyapunov function approach, Chin. Ann. Math., 33 (2012), 479-500.  doi: 10.1007/s11401-012-0727-y.  Google Scholar

[21]

M. GugatL. Rosier and V. Perrollaz, Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms, Journal of Evolution Equations, 18 (2018), 1471-1500.  doi: 10.1007/s00028-018-0449-z.  Google Scholar

[22]

H. K. Khalil, Nonlinear Control, Pearson Education, 2015. Google Scholar

[23]

G. Leugering and G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM Journal on Control and Optimization, 41 (2002), 164-180.  doi: 10.1137/S0363012900375664.  Google Scholar

[24] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 1st edition, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.  doi: 10.1017/CBO9780511791253.  Google Scholar
[25]

P. Schillen and S. Göttlich, Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization, European Journal of Control, 35 (2017), 11-18.  doi: 10.1016/j.ejcon.2017.02.002.  Google Scholar

[26]

A. Zlotnik, M. Chertkov and S. Backhaus, Optimal control of transient flow in natural gas networks, 54th IEEE Conference on Decision and Control (CDC), (2015), 4563-4570. doi: 10.1109/CDC.2015.7402932.  Google Scholar

Figure 1.  $ \log_2 $ of $ \hat{L}^1_x $-error for Riemann invariants
Figure 2.  Lyapunov functions for $ {G = \mathbb{1}} $ and $ {\hat{\mu} = 0} $
Figure 3.  Pipeline with two compressors and stability domain for the $ L^2 $-norm
Figure 4.  Lyapunov functions for the steady states $ {\bar{h}(x): = 3} $ and $ {\bar{h}(x): = 3+10^{-3} \cos(2 \pi x)} $
Figure 5.  Non-decaying Lyapunov functions for the steady state $ {\bar{h}(x): = 3+0.1 \cos(2 \pi x)} $
Table 1.  $\hat{L}^1_x$-error and EOS for Riemann invariants
$\hat{L}^1_x$-error EOC
x d=0 d=1 d=2 d=3 d=4 d=0 d=1 d=2 d=3 d=4
$2^{-4}$ 0.52 3.61 24.11 146.27 953.65
$2^{-5}$ 0.27 1.87 12.46 75.48 492.38 0.95 0.95 0.95 0.95 0.95
$2^{-6}$ 0.13 0.94 6.27 37.97 247.28 0.99 0.99 0.99 0.99 0.99
$2^{-7}$ 0.07 0.46 3.11 18.80 121.91 1.01 1.01 1.01 1.01 1.02
$2^{-8}$ 0.03 0.23 1.51 9.12 58.63 1.04 1.04 1.04 1.04 1.06
$2^{-9}$ 0.02 0.11 0.70 4.26 26.98 1.10 1.10 1.10 1.10 1.12
$\hat{L}^1_x$-error EOC
x d=0 d=1 d=2 d=3 d=4 d=0 d=1 d=2 d=3 d=4
$2^{-4}$ 0.52 3.61 24.11 146.27 953.65
$2^{-5}$ 0.27 1.87 12.46 75.48 492.38 0.95 0.95 0.95 0.95 0.95
$2^{-6}$ 0.13 0.94 6.27 37.97 247.28 0.99 0.99 0.99 0.99 0.99
$2^{-7}$ 0.07 0.46 3.11 18.80 121.91 1.01 1.01 1.01 1.01 1.02
$2^{-8}$ 0.03 0.23 1.51 9.12 58.63 1.04 1.04 1.04 1.04 1.06
$2^{-9}$ 0.02 0.11 0.70 4.26 26.98 1.10 1.10 1.10 1.10 1.12
Table 2.  Error of Lyapunov function for Euler]{$L^1_t$-, $L^2_t$-, $L^\infty_t$-error and EOC for Lyapunov functions, units in $0.01$
${L_t^1\text{-error}}$ EOC
$\Delta x$ d=0 d=1 d=2 d=3 d=4 d=0 d=1 d=2 d=3 d=4
$2^{-4}$ 6.90 7.08 7.08 7.08 7.00
$2^{-5}$ 3.61 3.70 3.70 3.70 3.63 0.93 0.93 0.93 0.93 0.95
$2^{-6}$ 1.84 1.88 1.88 1.88 1.81 0.98 0.98 0.98 0.98 1.00
$2^{-7}$ 0.91 0.94 0.94 0.94 0.87 1.01 1.01 1.01 1.01 1.06
$2^{-8}$ 0.45 0.46 0.46 0.46 0.39 1.04 1.04 1.04 1.04 1.17
$2^{-9}$ 0.21 0.21 0.21 0.21 0.14 1.10 1.10 1.10 1.10 1.42
${L_t^2\text{-error}}$ EOC
d=0 d=1 d=2 d=3 d=4 d=0 d=1 d=2 d=3 d=4
$2^{-4}$ 7.90 8.04 8.04 8.04 7.96
$2^{-5}$ 4.15 4.23 4.23 4.23 4.15 0.93 0.93 0.93 0.93 0.94
$2^{-6}$ 2.12 2.16 2.16 2.16 2.08 0.97 0.97 0.97 0.97 1.00
$2^{-7}$ 1.06 1.08 1.08 1.07 1.00 1.00 1.00 1.00 1.00 1.06
$2^{-8}$ 0.51 0.52 0.52 0.52 0.44 1.04 1.04 1.04 1.04 1.16
$2^{-9}$ 0.24 0.25 0.25 0.25 0.17 1.09 1.09 1.09 1.09 1.42
${L_t^\infty\text{-error}}$ EOC
$\Delta x$ d=0 d=1 d=2 d=3 d=4 d=0 d=1 d=2 d=3 d=4
$2^{-4}$ 13.90 13.92 13.92 13.91 13.78
$2^{-5}$ 7.41 7.43 7.43 7.42 7.29 0.91 0.91 0.91 0.91 0.92
$2^{-6}$ 3.79 3.79 3.79 3.79 3.66 0.97 0.97 0.97 0.97 0.99
$2^{-7}$ 1.87 1.87 1.87 1.87 1.74 1.02 1.02 1.02 1.02 1.07
$2^{-8}$ 0.89 0.90 0.90 0.90 0.77 1.06 1.06 1.06 1.06 1.19
$2^{-9}$ 0.42 0.42 0.42 0.42 0.29 1.09 1.09 1.09 1.09 1.40
${L_t^1\text{-error}}$ EOC
$\Delta x$ d=0 d=1 d=2 d=3 d=4 d=0 d=1 d=2 d=3 d=4
$2^{-4}$ 6.90 7.08 7.08 7.08 7.00
$2^{-5}$ 3.61 3.70 3.70 3.70 3.63 0.93 0.93 0.93 0.93 0.95
$2^{-6}$ 1.84 1.88 1.88 1.88 1.81 0.98 0.98 0.98 0.98 1.00
$2^{-7}$ 0.91 0.94 0.94 0.94 0.87 1.01 1.01 1.01 1.01 1.06
$2^{-8}$ 0.45 0.46 0.46 0.46 0.39 1.04 1.04 1.04 1.04 1.17
$2^{-9}$ 0.21 0.21 0.21 0.21 0.14 1.10 1.10 1.10 1.10 1.42
${L_t^2\text{-error}}$ EOC
d=0 d=1 d=2 d=3 d=4 d=0 d=1 d=2 d=3 d=4
$2^{-4}$ 7.90 8.04 8.04 8.04 7.96
$2^{-5}$ 4.15 4.23 4.23 4.23 4.15 0.93 0.93 0.93 0.93 0.94
$2^{-6}$ 2.12 2.16 2.16 2.16 2.08 0.97 0.97 0.97 0.97 1.00
$2^{-7}$ 1.06 1.08 1.08 1.07 1.00 1.00 1.00 1.00 1.00 1.06
$2^{-8}$ 0.51 0.52 0.52 0.52 0.44 1.04 1.04 1.04 1.04 1.16
$2^{-9}$ 0.24 0.25 0.25 0.25 0.17 1.09 1.09 1.09 1.09 1.42
${L_t^\infty\text{-error}}$ EOC
$\Delta x$ d=0 d=1 d=2 d=3 d=4 d=0 d=1 d=2 d=3 d=4
$2^{-4}$ 13.90 13.92 13.92 13.91 13.78
$2^{-5}$ 7.41 7.43 7.43 7.42 7.29 0.91 0.91 0.91 0.91 0.92
$2^{-6}$ 3.79 3.79 3.79 3.79 3.66 0.97 0.97 0.97 0.97 0.99
$2^{-7}$ 1.87 1.87 1.87 1.87 1.74 1.02 1.02 1.02 1.02 1.07
$2^{-8}$ 0.89 0.90 0.90 0.90 0.77 1.06 1.06 1.06 1.06 1.19
$2^{-9}$ 0.42 0.42 0.42 0.42 0.29 1.09 1.09 1.09 1.09 1.40
Table 3.  Estimated decay rate µe (top), guaranteed rate µg (middle) and observed rate µo (bottom) for $\mathsf{\hat{\mu }}$ : = 0.25 with constant and perturbed steady states
Estimated rate
constant p=4 p=3 p=2 p=1
d=0 0.2499 0.2498 0.2485 0.2254 -0.1563
d=1 0.2499 0.2495 0.2420 0.0374 -2.2991
d=2 0.2499 0.2458 0.1288 -1.3167 -15.8406
Guaranteed rate
constant p=4 p=3 p=2 p=1
d=0 0.2499 0.2498 0.2487 0.2279 -0.1154
d=1 0.2499 0.2495 0.2428 0.0591 -2.0424
d=2 0.2499 0.2463 0.1412 -1.1566 -14.2202
Observed rate
constant p=4 p=3 p=2 p=1
d=0 0.2572 0.2572 0.2572 0.2537 0.1343
d=1 0.3461 0.3459 0.3416 0.2126 -1.3244
d=2 0.2632 0.2615 0.2089 -0.6659 -10.7687
Estimated rate
constant p=4 p=3 p=2 p=1
d=0 0.2499 0.2498 0.2485 0.2254 -0.1563
d=1 0.2499 0.2495 0.2420 0.0374 -2.2991
d=2 0.2499 0.2458 0.1288 -1.3167 -15.8406
Guaranteed rate
constant p=4 p=3 p=2 p=1
d=0 0.2499 0.2498 0.2487 0.2279 -0.1154
d=1 0.2499 0.2495 0.2428 0.0591 -2.0424
d=2 0.2499 0.2463 0.1412 -1.1566 -14.2202
Observed rate
constant p=4 p=3 p=2 p=1
d=0 0.2572 0.2572 0.2572 0.2537 0.1343
d=1 0.3461 0.3459 0.3416 0.2126 -1.3244
d=2 0.2632 0.2615 0.2089 -0.6659 -10.7687
[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[3]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[8]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[11]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[12]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[13]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[14]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[15]

Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021006

[16]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[17]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[18]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[19]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[20]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (103)
  • HTML views (746)
  • Cited by (0)

Other articles
by authors

[Back to Top]