• Previous Article
    A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems
  • MCRF Home
  • This Issue
  • Next Article
    Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative
March  2020, 10(1): 157-169. doi: 10.3934/mcrf.2019034

Controllability properties of degenerate pseudo-parabolic boundary control problems

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

* Corresponding author: Tian-Yuan Xu

Received  September 2018 Revised  February 2019 Published  March 2020 Early access  April 2019

Fund Project: The first author is supported by the China Postdoctoral Science Foundation grant 2018M630960, and the Excellent Young Scholar Program of South China Normal University grant 17KJ01. The second author is supported by the Joint Training PhD Program of China Scholarship Council grant 201806750016, and the Innovation Project of Graduate School of South China Normal University grant 2018LKXM005. The third author is supported by NSFC grant 11771156.

This paper concerns with the boundary control of a degenerate pseudo-parabolic equation. Compare to the results those for degenerate parabolic equations, we discover that the null controllability property for the degenerate pseudo-parabolic equation is false, but the approximate controllability in some proper state space holds.

Citation: Mu-Ming Zhang, Tian-Yuan Xu, Jing-Xue Yin. Controllability properties of degenerate pseudo-parabolic boundary control problems. Mathematical Control and Related Fields, 2020, 10 (1) : 157-169. doi: 10.3934/mcrf.2019034
References:
[1]

J. L. Bona and V. A. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.  doi: 10.1016/0022-247X(80)90098-0.

[2]

H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differential Equations, 24 (1977), 412-425.  doi: 10.1016/0022-0396(77)90009-2.

[3]

C. Cances, C. Choquet, Y. Fan and I. S. Pop, Existence of weak solutions to a degenerate pseudo-parabolic equation modeling two-phase flow in porous media, CASA Report, (2010), 10–75, Available from: https://pure.tue.nl/ws/files/3187782/695284.pdf.

[4]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.  doi: 10.1137/04062062X.

[5]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190. 

[6]

P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling strongly degenerate parabolic equations, preprint, arXiv: 1801.01380.

[7]

P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Mathematical Control and Related Fields, 7 (2017), 171-211.  doi: 10.3934/mcrf.2017006.

[8]

R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. I, Interscience, New York, 1953.

[9]

C. M. Cuesta and J. Hulshof, A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves, Nonlinear Anal., 52 (2003), 1199-1218.  doi: 10.1016/S0362-546X(02)00160-8.

[10]

A. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, J. Comput. Appl. Math., 133 (2001), 65-83.  doi: 10.1016/S0377-0427(00)00635-X.

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.

[12]

A. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Ser. 34, Seoul National University, Korea, 1996.

[13]

S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.  doi: 10.1051/cocv/2012013.

[14]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054.  doi: 10.1137/120901374.

[15]

A. HasanO. M. Aamo and B. Foss, Boundary control for a class of pseudo-parabolic differential equations, Systems Control Lett., 62 (2013), 63-69.  doi: 10.1016/j.sysconle.2012.10.009.

[16]

S. JiJ. Yin and Y. Cao, Instability of Positive Periodic Solutions for Semilinear Pseudo-Parabolic Equations with Logarithmic Nonlinearity, J. Differential Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.

[17]

K. B. LiaskosA. A. Pantelous and I. G. Stratis, Linear stochastic degenerate Sobolev equations and applications, Internat. J. Control, 88 (2015), 2538-2553.  doi: 10.1080/00207179.2015.1048482.

[18]

X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Optim., 50 (2012), 2046-2064.  doi: 10.1137/110851808.

[19]

Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift, J. Funct. Anal., 260 (2011), 832-851.  doi: 10.1016/j.jfa.2010.10.018.

[20]

M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Anal., 66 (2007), 2653-2675.  doi: 10.1016/j.na.2006.03.046.

[21]

L. Rosier and P. Rouchon, On the controllability of a wave equation with structural damping, Int. J. Tomogr. Stat., 5 (2007), 79-84. 

[22]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.

[23]

Q. TaoH. Gao and Z. Yao, Null controllability of a pseudo-parabolic equation with moving control, J. Math. Anal. Appl., 418 (2014), 998-1005.  doi: 10.1016/j.jmaa.2014.04.038.

[24]

C. J. Van DuijnY. FanL. A. Peletier and I. S. Pop, Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media, Nonlinear Anal. Real World Appl., 14 (2013), 1361-1383.  doi: 10.1016/j.nonrwa.2012.10.002.

[25]

L. W. White, Control of a pseudo-parabolic initial value problem to a target function, SIAM J. Control Optim., 17 (1979), 587-595.  doi: 10.1137/0317041.

[26]

L. W. White, Controllability properties of pseudoparabolic boundary control problems, SIAM J. Control Optim., 18 (1980), 534-539.  doi: 10.1137/0318039.

[27]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, 4 (2010), 3008–3034. doi: 10.1007/978-0-387-89488-1.

[28]

X. Zhang and E. Zuazua, The linearized Benjamin-Bona-Mahony equation: A spectral approach to unique continuation. Semigroups of operators: theory and applications, Optimization Software, (2002), 368-379. 

[29]

X. Zhang and E. Zuazua, Unique continuation for the linearized Benjamin-Bona-Mahony equation with space-dependent potential, Math. Ann., 325 (2003), 543-582.  doi: 10.1007/s00208-002-0391-8.

show all references

References:
[1]

J. L. Bona and V. A. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.  doi: 10.1016/0022-247X(80)90098-0.

[2]

H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differential Equations, 24 (1977), 412-425.  doi: 10.1016/0022-0396(77)90009-2.

[3]

C. Cances, C. Choquet, Y. Fan and I. S. Pop, Existence of weak solutions to a degenerate pseudo-parabolic equation modeling two-phase flow in porous media, CASA Report, (2010), 10–75, Available from: https://pure.tue.nl/ws/files/3187782/695284.pdf.

[4]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.  doi: 10.1137/04062062X.

[5]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190. 

[6]

P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling strongly degenerate parabolic equations, preprint, arXiv: 1801.01380.

[7]

P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Mathematical Control and Related Fields, 7 (2017), 171-211.  doi: 10.3934/mcrf.2017006.

[8]

R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. I, Interscience, New York, 1953.

[9]

C. M. Cuesta and J. Hulshof, A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves, Nonlinear Anal., 52 (2003), 1199-1218.  doi: 10.1016/S0362-546X(02)00160-8.

[10]

A. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, J. Comput. Appl. Math., 133 (2001), 65-83.  doi: 10.1016/S0377-0427(00)00635-X.

[11]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.

[12]

A. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Ser. 34, Seoul National University, Korea, 1996.

[13]

S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.  doi: 10.1051/cocv/2012013.

[14]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054.  doi: 10.1137/120901374.

[15]

A. HasanO. M. Aamo and B. Foss, Boundary control for a class of pseudo-parabolic differential equations, Systems Control Lett., 62 (2013), 63-69.  doi: 10.1016/j.sysconle.2012.10.009.

[16]

S. JiJ. Yin and Y. Cao, Instability of Positive Periodic Solutions for Semilinear Pseudo-Parabolic Equations with Logarithmic Nonlinearity, J. Differential Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.

[17]

K. B. LiaskosA. A. Pantelous and I. G. Stratis, Linear stochastic degenerate Sobolev equations and applications, Internat. J. Control, 88 (2015), 2538-2553.  doi: 10.1080/00207179.2015.1048482.

[18]

X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Optim., 50 (2012), 2046-2064.  doi: 10.1137/110851808.

[19]

Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift, J. Funct. Anal., 260 (2011), 832-851.  doi: 10.1016/j.jfa.2010.10.018.

[20]

M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Anal., 66 (2007), 2653-2675.  doi: 10.1016/j.na.2006.03.046.

[21]

L. Rosier and P. Rouchon, On the controllability of a wave equation with structural damping, Int. J. Tomogr. Stat., 5 (2007), 79-84. 

[22]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.

[23]

Q. TaoH. Gao and Z. Yao, Null controllability of a pseudo-parabolic equation with moving control, J. Math. Anal. Appl., 418 (2014), 998-1005.  doi: 10.1016/j.jmaa.2014.04.038.

[24]

C. J. Van DuijnY. FanL. A. Peletier and I. S. Pop, Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media, Nonlinear Anal. Real World Appl., 14 (2013), 1361-1383.  doi: 10.1016/j.nonrwa.2012.10.002.

[25]

L. W. White, Control of a pseudo-parabolic initial value problem to a target function, SIAM J. Control Optim., 17 (1979), 587-595.  doi: 10.1137/0317041.

[26]

L. W. White, Controllability properties of pseudoparabolic boundary control problems, SIAM J. Control Optim., 18 (1980), 534-539.  doi: 10.1137/0318039.

[27]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proceedings of the International Congress of Mathematicians, Hyderabad, India, 4 (2010), 3008–3034. doi: 10.1007/978-0-387-89488-1.

[28]

X. Zhang and E. Zuazua, The linearized Benjamin-Bona-Mahony equation: A spectral approach to unique continuation. Semigroups of operators: theory and applications, Optimization Software, (2002), 368-379. 

[29]

X. Zhang and E. Zuazua, Unique continuation for the linearized Benjamin-Bona-Mahony equation with space-dependent potential, Math. Ann., 325 (2003), 543-582.  doi: 10.1007/s00208-002-0391-8.

[1]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

[2]

Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005

[3]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[4]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005

[5]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[6]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[7]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[8]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[9]

Yitian Wang, Xiaoping Liu, Yuxuan Chen. Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29 (6) : 3687-3720. doi: 10.3934/era.2021057

[10]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations and Control Theory, 2022, 11 (1) : 225-238. doi: 10.3934/eect.2020109

[11]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[12]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks and Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[13]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[14]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[15]

Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29 (5) : 3097-3119. doi: 10.3934/era.2021028

[16]

Yang Cao, Qiuting Zhao. Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29 (6) : 3833-3851. doi: 10.3934/era.2021064

[17]

Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121

[18]

Tran Ngoc Thach, Devendra Kumar, Nguyen Hoang Luc, Nguyen Huy Tuan. Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 481-499. doi: 10.3934/dcdss.2021118

[19]

J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136

[20]

Morteza Fotouhi, Leila Salimi. Controllability results for a class of one dimensional degenerate/singular parabolic equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1415-1430. doi: 10.3934/cpaa.2013.12.1415

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (421)
  • HTML views (761)
  • Cited by (0)

Other articles
by authors

[Back to Top]