December  2019, 9(4): 607-621. doi: 10.3934/mcrf.2019043

Optimal harvesting for age-structured population dynamics with size-dependent control

1. 

Faculty of Mathematics, "Alexandru Ioan Cuza" University of Iaşi, "Octav Mayer" Institute of Mathematics of the Romanian Academy, Iaşi 700506, Romania

2. 

Faculty of Mathematics, "Alexandru Ioan Cuza" University of Iaşi, Iaşi 700506, Romania

* Corresponding author: Sebastian Aniţta

Received  May 2018 Revised  August 2019 Published  November 2019

We investigate two optimal harvesting problems related to age-dependent population dynamics; namely we consider two problems of maximizing the profit for age-structured population dynamics with respect to a size-dependent harvesting effort. We evaluate the directional derivatives for the cost functionals. The structure of the harvesting effort is uniquely determined by its intensity (magnitude) and by its area of action/distribution. We derive an iterative algorithm to increase at each iteration the profit by changing the intensity of the harvesting effort and its distribution area. Some numerical tests are given to illustrate the effectiveness of the theoretical results for the first optimal harvesting problem.

Citation: Sebastian Aniţa, Ana-Maria Moşsneagu. Optimal harvesting for age-structured population dynamics with size-dependent control. Mathematical Control and Related Fields, 2019, 9 (4) : 607-621. doi: 10.3934/mcrf.2019043
References:
[1]

B. AinsebaS. Aniţa and M. Langlais, Optimal control for a nonlinear age-structured population dynamics model, Electron. J. Diff. Eqs., 28 (2003), 1-9. 

[2]

S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Kluwer Acad. Publ., Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.

[3]

L.-I. AniţaS. Aniţa and V. Arnǎutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl. Math. Comput., 215 (2009), 2701-2715.  doi: 10.1016/j.amc.2009.09.010.

[4]

S. Aniţa, V. Arnǎutu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics. From Mathematical Models to Numerical Simulation with MATLAB, Birkhäuser, Basel, 2011. doi: 10.1007/978-0-8176-8098-5.

[5]

S. AniţaV. Capasso and A.-M. Moşneagu, Regional control in optimal harvesting problems of population dynamics, Nonlin. Anal., 147 (2016), 191-212.  doi: 10.1016/j.na.2016.09.008.

[6]

V. Arnǎutu and P. Neittaanmäki, Optimal Control from Theory to Computer Programs, Kluwer Acad. Publ., Dordrecht, 2003. doi: 10.1007/978-94-017-2488-3.

[7]

A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phen., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403.

[8]

A. O. Belyakov and V. M. Veliov, On optimal harvesting in age-structured populations, in Dynamic Perspectives on Managerial Decision Making (H. Dawid, K.F. Doerner, G. Feichtinger, P.M. Kort, A. Seidl, Eds.), Springer Internat. Publ., 22 (2016), 149-166. doi: 10.1007/978-3-319-39120-5_9.

[9]

A. BressanG. M. Coclite and W. Shen, A multidimensional optimal-harvesting problem with measure-valued solutions, SIAM J. Control Optim., 51 (2013), 1186-1202.  doi: 10.1137/110853510.

[10]

M. Brokate, Pontyagin's principle for control problems in age-dependent population dynamics, J. Math. Biol., 23 (1985), 75-101.  doi: 10.1007/BF00276559.

[11]

M. Brokate, On a certain optimal harvesting problem with continuous age structure, in: Optimal Control of Partial Differential Equations II (K.-H. Hoffmann, W. Krabs, Eds.), Birkhäuser, Boston, 78 (1987), 29-42.

[12]

G. M. Coclite and M. Garavello, A time dependent optimal harvesting problem with measure valued solutions, SIAM J. Control Optim., 55 (2017), 913-935.  doi: 10.1137/16M1061886.

[13]

G. M. CocliteM. Garavello and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 865-900.  doi: 10.3934/dcdss.2018053.

[14]

G. FeichtingerG. Tragler and V. M. Veliov, Optimality conditions for age-structured control systems, J. Math. Anal. Appl., 288 (2003), 47-68.  doi: 10.1016/j.jmaa.2003.07.001.

[15]

K. R. Fister and S. Lenhart, Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54 (2006), 1-15.  doi: 10.1007/s00245-005-0847-9.

[16]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of age-structured populations: some simple models, Math. Biosci., 55 (1981), 115-136.  doi: 10.1016/0025-5564(81)90015-8.

[17]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of persistent age-structured populations, J. Math. Biol., 13 (1981), 131-148.  doi: 10.1007/BF00275209.

[18]

Z. R. He, Optimal harvesting of two competing species with age dependence, Nonlin. Anal. Real World Appl., 7 (2006), 769-788.  doi: 10.1016/j.nonrwa.2005.04.005.

[19]

N. Hegoburu, P. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750, https://hal.archives-ouvertes.fr/hal-01395712. doi: 10.1137/16M1103087.

[20]

N. Hritonenko and Y. Yatsenko, Optimization of harvesting age in integral age-dependent model of population dynamics, Math. Biosci., 195 (2005), 154-167.  doi: 10.1016/j.mbs.2005.03.001.

[21]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs - C.N.R., Giardini Editori e Stampatori, Pisa, 1995.

[22]

S. Lenhart, Using optimal control of parabolic PDEs to investigate population questions, NIMBioS, April 9-11, 2014, https://www.fields.utoronto.ca/programs/scientific/13-14/BIOMAT/presentations/lenhartToronto3.pdf.

[23]

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall, 2007.

[24]

Z. Luo, Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model, Appl. Math. Comput., 186 (2007), 1742-1752.  doi: 10.1016/j.amc.2006.08.168.

[25]

Z. LuoW. T. Li and M. Wang, Optimal harvesting control problem for linear periodic age-dependent population dynamics, Appl. Math. Comput., 151 (2004), 789-800.  doi: 10.1016/S0096-3003(03)00536-8.

[26]

L. F. Murphy and S. J. Smith, Optimal harvesting of an age-structured population, J. Math. Biol., 29 (1990), 77-90.  doi: 10.1007/BF00173910.

[27]

G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.

[28]

C. ZhaoM. Wang and P. Zhao, Optimal harvesting problems for age-dependent interacting species with diffusion, Appl. Math. Comput., 163 (2005), 117-129.  doi: 10.1016/j.amc.2004.01.030.

[29]

C. ZhaoP. Zhao and M. Wang, Optimal harvesting for nonlinear age-dependent population dynamics, Math. Comput. Model., 43 (2006), 310-319.  doi: 10.1016/j.mcm.2005.06.008.

show all references

References:
[1]

B. AinsebaS. Aniţa and M. Langlais, Optimal control for a nonlinear age-structured population dynamics model, Electron. J. Diff. Eqs., 28 (2003), 1-9. 

[2]

S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Kluwer Acad. Publ., Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.

[3]

L.-I. AniţaS. Aniţa and V. Arnǎutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl. Math. Comput., 215 (2009), 2701-2715.  doi: 10.1016/j.amc.2009.09.010.

[4]

S. Aniţa, V. Arnǎutu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics. From Mathematical Models to Numerical Simulation with MATLAB, Birkhäuser, Basel, 2011. doi: 10.1007/978-0-8176-8098-5.

[5]

S. AniţaV. Capasso and A.-M. Moşneagu, Regional control in optimal harvesting problems of population dynamics, Nonlin. Anal., 147 (2016), 191-212.  doi: 10.1016/j.na.2016.09.008.

[6]

V. Arnǎutu and P. Neittaanmäki, Optimal Control from Theory to Computer Programs, Kluwer Acad. Publ., Dordrecht, 2003. doi: 10.1007/978-94-017-2488-3.

[7]

A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phen., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403.

[8]

A. O. Belyakov and V. M. Veliov, On optimal harvesting in age-structured populations, in Dynamic Perspectives on Managerial Decision Making (H. Dawid, K.F. Doerner, G. Feichtinger, P.M. Kort, A. Seidl, Eds.), Springer Internat. Publ., 22 (2016), 149-166. doi: 10.1007/978-3-319-39120-5_9.

[9]

A. BressanG. M. Coclite and W. Shen, A multidimensional optimal-harvesting problem with measure-valued solutions, SIAM J. Control Optim., 51 (2013), 1186-1202.  doi: 10.1137/110853510.

[10]

M. Brokate, Pontyagin's principle for control problems in age-dependent population dynamics, J. Math. Biol., 23 (1985), 75-101.  doi: 10.1007/BF00276559.

[11]

M. Brokate, On a certain optimal harvesting problem with continuous age structure, in: Optimal Control of Partial Differential Equations II (K.-H. Hoffmann, W. Krabs, Eds.), Birkhäuser, Boston, 78 (1987), 29-42.

[12]

G. M. Coclite and M. Garavello, A time dependent optimal harvesting problem with measure valued solutions, SIAM J. Control Optim., 55 (2017), 913-935.  doi: 10.1137/16M1061886.

[13]

G. M. CocliteM. Garavello and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 865-900.  doi: 10.3934/dcdss.2018053.

[14]

G. FeichtingerG. Tragler and V. M. Veliov, Optimality conditions for age-structured control systems, J. Math. Anal. Appl., 288 (2003), 47-68.  doi: 10.1016/j.jmaa.2003.07.001.

[15]

K. R. Fister and S. Lenhart, Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54 (2006), 1-15.  doi: 10.1007/s00245-005-0847-9.

[16]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of age-structured populations: some simple models, Math. Biosci., 55 (1981), 115-136.  doi: 10.1016/0025-5564(81)90015-8.

[17]

M. E. Gurtin and L. F. Murphy, On the optimal harvesting of persistent age-structured populations, J. Math. Biol., 13 (1981), 131-148.  doi: 10.1007/BF00275209.

[18]

Z. R. He, Optimal harvesting of two competing species with age dependence, Nonlin. Anal. Real World Appl., 7 (2006), 769-788.  doi: 10.1016/j.nonrwa.2005.04.005.

[19]

N. Hegoburu, P. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750, https://hal.archives-ouvertes.fr/hal-01395712. doi: 10.1137/16M1103087.

[20]

N. Hritonenko and Y. Yatsenko, Optimization of harvesting age in integral age-dependent model of population dynamics, Math. Biosci., 195 (2005), 154-167.  doi: 10.1016/j.mbs.2005.03.001.

[21]

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs - C.N.R., Giardini Editori e Stampatori, Pisa, 1995.

[22]

S. Lenhart, Using optimal control of parabolic PDEs to investigate population questions, NIMBioS, April 9-11, 2014, https://www.fields.utoronto.ca/programs/scientific/13-14/BIOMAT/presentations/lenhartToronto3.pdf.

[23]

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall, 2007.

[24]

Z. Luo, Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model, Appl. Math. Comput., 186 (2007), 1742-1752.  doi: 10.1016/j.amc.2006.08.168.

[25]

Z. LuoW. T. Li and M. Wang, Optimal harvesting control problem for linear periodic age-dependent population dynamics, Appl. Math. Comput., 151 (2004), 789-800.  doi: 10.1016/S0096-3003(03)00536-8.

[26]

L. F. Murphy and S. J. Smith, Optimal harvesting of an age-structured population, J. Math. Biol., 29 (1990), 77-90.  doi: 10.1007/BF00173910.

[27]

G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.

[28]

C. ZhaoM. Wang and P. Zhao, Optimal harvesting problems for age-dependent interacting species with diffusion, Appl. Math. Comput., 163 (2005), 117-129.  doi: 10.1016/j.amc.2004.01.030.

[29]

C. ZhaoP. Zhao and M. Wang, Optimal harvesting for nonlinear age-dependent population dynamics, Math. Comput. Model., 43 (2006), 310-319.  doi: 10.1016/j.mcm.2005.06.008.

Figure 1.  The size of an individual as a function of age $ a $
Figure 2.  $ \alpha $ as a function of time t. The hashed region is the area where the control acts
Figure 3.  The fertility and mortality rates
Figure 4.  The representation of $ J $ as a function of iteration
Figure 5.  The harvesting effort for Test 1
Figure 6.  The harvesting effort for Test 2
Table 1.  The value of $ J $ at each iteration
iteration J
1 0.464525126289841
2 0.533792098410522
3 0.545212800519842
4 0.552867826650825
5 0.556828710910306
6 0.558793583997659
7 0.559787107591890
8 0.560285396165302
9 0.560534749191512
10 0.560659455111737
11 0.560721812501533
12 0.560752991933830
13 0.560768581787776
14 0.560776376743360
iteration J
1 0.464525126289841
2 0.533792098410522
3 0.545212800519842
4 0.552867826650825
5 0.556828710910306
6 0.558793583997659
7 0.559787107591890
8 0.560285396165302
9 0.560534749191512
10 0.560659455111737
11 0.560721812501533
12 0.560752991933830
13 0.560768581787776
14 0.560776376743360
[1]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[2]

Miaomiao Chen, Rong Yuan. Maximum principle for the optimal harvesting problem of a size-stage-structured population model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4619-4648. doi: 10.3934/dcdsb.2021245

[3]

Hiroaki Morimoto. Optimal harvesting and planting control in stochastic logistic population models. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2545-2559. doi: 10.3934/dcdsb.2012.17.2545

[4]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

[5]

Hassan Tahir, Asaf Khan, Anwarud Din, Amir Khan, Gul Zaman. Optimal control strategy for an age-structured SIR endemic model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2535-2555. doi: 10.3934/dcdss.2021054

[6]

Peng Zhong, Suzanne Lenhart. Study on the order of events in optimal control of a harvesting problem modeled by integrodifference equations. Evolution Equations and Control Theory, 2013, 2 (4) : 749-769. doi: 10.3934/eect.2013.2.749

[7]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[8]

Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 107-114. doi: 10.3934/dcdsb.2007.8.107

[9]

Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon. An age-structured model with immune response of HIV infection: Modeling and optimal control approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 153-172. doi: 10.3934/dcdsb.2014.19.153

[10]

Peng Zhong, Suzanne Lenhart. Optimal control of integrodifference equations with growth-harvesting-dispersal order. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2281-2298. doi: 10.3934/dcdsb.2012.17.2281

[11]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[12]

Meng Liu, Chuanzhi Bai. Optimal harvesting of a stochastic delay competitive model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1493-1508. doi: 10.3934/dcdsb.2017071

[13]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[14]

Yicang Zhou, Paolo Fergola. Dynamics of a discrete age-structured SIS models. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 841-850. doi: 10.3934/dcdsb.2004.4.841

[15]

Mohammed Nor Frioui, Tarik Mohammed Touaoula, Bedreddine Ainseba. Global dynamics of an age-structured model with relapse. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2245-2270. doi: 10.3934/dcdsb.2019226

[16]

Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2021064

[17]

Dongmei Xiao. Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 699-719. doi: 10.3934/dcdsb.2016.21.699

[18]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[19]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[20]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (349)
  • HTML views (155)
  • Cited by (0)

Other articles
by authors

[Back to Top]