
-
Previous Article
On the null controllability of the Lotka-Mckendrick system
- MCRF Home
- This Issue
-
Next Article
Backward uniqueness results for some parabolic equations in an infinite rod
Time optimal internal controls for the Lotka-McKendrick equation with spatial diffusion
Institut de Mathématiques de Bordeaux, Université de Bordeaux/Bordeaux INP/CNRS, 351 Cours de la Libération, 33 405 Talence, France |
This work is devoted to establish a bang-bang principle of time optimal controls for a controlled age-structured population evolving in a bounded domain of $ \mathbb{R}^n $. Here, the bang-bang principle is deduced by an $ L^\infty $ null-controllability result for the Lotka-McKendrick equation with spatial diffusion. This $ L^\infty $ null-controllability result is obtained by combining a methodology employed by Hegoburu and Tucsnak - originally devoted to study the null-controllability of the Lotka-McKendrick equation with spatial diffusion in the more classical $ L^2 $ setting - with a strategy developed by Wang, originally intended to study the time optimal internal controls for the heat equation.
References:
[1] |
B. Ainseba,
Exact and approximate controllability of the age and space population dynamics structured model, Journal of Mathematical Analysis and Applications, 275 (2002), 562-574.
doi: 10.1016/S0022-247X(02)00238-X. |
[2] |
B. Ainseba and S. Aniţa, Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differential Equations, 2004, 11 pp. (electronic). |
[3] |
B. Ainseba and M. Iannelli,
Exact controllability of a nonlinear population-dynamics problem, Differential and Integral Equations. An International Journal for Theory & Applications, 16 (2003), 1369-1384.
|
[4] |
B. Ainseba and M. Langlais,
On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl., 248 (2000), 455-474.
doi: 10.1006/jmaa.2000.6921. |
[5] |
S. Aniţa,
Optimal harvesting for a nonlinear age-dependent population dynamics, J. Math. Anal. Appl., 226 (1998), 6-22.
doi: 10.1006/jmaa.1998.6064. |
[6] |
S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Theory and Applications, Kluwer Academic Publishers, Dordrecht, 2000.
doi: 10.1007/978-94-015-9436-3. |
[7] |
S. Aniţa and N. Hegoburu, Null controllability via comparison results for nonlinear age-structured population dynamics, Mathematics of Control, Signals, and Systems, 31 (2019), Art. 2, 38pp.
doi: 10.1007/s00498-019-0232-x. |
[8] |
S. Aniţa, M. Iannelli, M.-Y. Kim and E.-J. Park,
Optimal harvesting for periodic age-dependent population dynamics, SIAM J. Appl. Math., 58 (1998), 1648-1666.
doi: 10.1137/S0036139996301180. |
[9] |
J. Apraiz and L. Escauriaza,
Null-control and measurable sets, ESAIM Control Optim. Calc. Var.), 19 (2013), 239-254.
doi: 10.1051/cocv/2012005. |
[10] |
J. Apraiz, L. Escauriaza, G. Wang and C. Zhang,
Observability inequalities and measurable sets, J. Eur. Math. Soc. (JEMS), 16 (2014), 2433-2475.
doi: 10.4171/JEMS/490. |
[11] |
V. Barbu and M. Iannelli,
Optimal control of population dynamics, J. Optim. Theory Appl., 102 (1999), 1-14.
doi: 10.1023/A:1021865709529. |
[12] |
V. Barbu, M. Iannelli and M. Martcheva,
On the controllability of the Lotka-McKendrick model of population dynamics, J. Math. Anal. Appl., 253 (2001), 142-165.
doi: 10.1006/jmaa.2000.7075. |
[13] |
M. Brokate,
Pontryagin's principle for control problems in age-dependent population dynamics, J. Math. Biol., 23 (1985), 75-101.
doi: 10.1007/BF00276559. |
[14] |
B. Z. Guo and W. L. Chan,
On the semigroup for age dependent population dynamics with spatial diffusion, J. Math. Anal. Appl., 184 (1994), 190-199.
doi: 10.1006/jmaa.1994.1193. |
[15] |
N. Hegoburu, P. Magal and M. Tucsnak,
Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750.
doi: 10.1137/16M1103087. |
[16] |
N. Hegoburu and M. Tucsnak,
Null controllability of the Lotka-McKendrick system with spatial diffusion, Math. Control Relat. Fields, 8 (2018), 707-720.
|
[17] |
N. Hritonenko and Y. Yatsenko,
The structure of optimal time- and age-dependent harvesting in the Lotka-McKendrik population model, Math. Biosci., 208 (2007), 48-62.
doi: 10.1016/j.mbs.2006.09.008. |
[18] |
N. Hritonenko, Y. Yatsenko, R.-U. Goetz and A. Xabadia, A bang–bang regime in optimal harvesting of size-structured populations, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), e2331–e2336. |
[19] |
W. Huyer,
Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion, Semigroup Forum, 49 (1994), 99-114.
doi: 10.1007/BF02573475. |
[20] |
M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori in Pisa, 1995. |
[21] |
H. Inaba, Age-structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017.
doi: 10.1007/978-981-10-0188-8. |
[22] |
F. Kappel and K. Zhang,
Approximation of linear age-structured population models using Legendre polynomials, J. Math. Anal. Appl., 180 (1993), 518-549.
doi: 10.1006/jmaa.1993.1414. |
[23] |
O. Kavian and O. Traore,
Approximate controllability by birth control for a nonlinear population dynamics model, ESAIM Control Optim. Calc. Var., 17 (2011), 1198-1213.
doi: 10.1051/cocv/2010043. |
[24] |
G. Lebeau and L. Robbiano,
Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.
doi: 10.1080/03605309508821097. |
[25] |
G. Lebeau and L. Robbiano,
Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491.
|
[26] |
J.-L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris; Gauthier-Villars, Paris, 1968. |
[27] |
Q. Lü,
Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations, Acta Math. Sin. (Engl. Ser.), 26 (2010), 2377-2386.
doi: 10.1007/s10114-010-9051-1. |
[28] |
Q. Lü,
A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273.
doi: 10.1051/cocv/2012008. |
[29] |
D. Maity, On the null controllability of the Lotka-Mckendrick system, working paper, 2018. |
[30] |
D. Maity, M. Tucsnak and E. Zuazua,
Controllability and positivity constraints in population dynamics with age structuring and diffusion, Journal de Mathématiques Pures et Appliquées, 129 (2019), 153-179.
doi: 10.1016/j.matpur.2018.12.006. |
[31] |
N. Medhin,
Optimal harvesting in age-structured populations, J. Optim. Theory Appl., 74 (1992), 413-423.
doi: 10.1007/BF00940318. |
[32] |
S. Micu, I. Roventa and M. Tucsnak,
Time optimal boundary controls for the heat equation, Journal of Functional Analysis, 263 (2012), 25-49.
doi: 10.1016/j.jfa.2012.04.009. |
[33] |
Y. Netrusov and Y. Safarov,
Weyl asymptotic formula for the Laplacian on domains with rough boundaries, Comm. Math. Phys., 253 (2005), 481-509.
doi: 10.1007/s00220-004-1158-8. |
[34] |
J. Song, J. Y. Yu, X. Z. Zhang, S. J. Hu, Z. X. Zhao, J. Q. Liu and D. X. Feng,
Spectral properties of population operator and asymptotic behaviour of population semigroup, Acta Math. Sci. (English Ed.), 2 (1982), 139-148.
doi: 10.1016/S0252-9602(18)30629-5. |
[35] |
O. Traore, Null controllability of a nonlinear population dynamics problem, Int. J. Math. Math. Sci., 2006 (2006), Art. ID 49279, 20pp.
doi: 10.1155/IJMMS/2006/49279. |
[36] |
G. Wang,
$L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701-1720.
doi: 10.1137/060678191. |
[37] |
G. Wang and C. Zhang,
Observability inequalities from measurable sets for some abstract evolution equations, SIAM J. Control Optim., 55 (2017), 1862-1886.
doi: 10.1137/15M1051907. |
[38] |
G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker, Inc., New York, Dordrecht, 1985. |
[39] |
J. Zabczyk,
Remarks on the algebraic Riccati equation in Hilbert space, Appl. Math. Optim., 2 (1975/76), 251-258.
doi: 10.1007/BF01464270. |
show all references
References:
[1] |
B. Ainseba,
Exact and approximate controllability of the age and space population dynamics structured model, Journal of Mathematical Analysis and Applications, 275 (2002), 562-574.
doi: 10.1016/S0022-247X(02)00238-X. |
[2] |
B. Ainseba and S. Aniţa, Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differential Equations, 2004, 11 pp. (electronic). |
[3] |
B. Ainseba and M. Iannelli,
Exact controllability of a nonlinear population-dynamics problem, Differential and Integral Equations. An International Journal for Theory & Applications, 16 (2003), 1369-1384.
|
[4] |
B. Ainseba and M. Langlais,
On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl., 248 (2000), 455-474.
doi: 10.1006/jmaa.2000.6921. |
[5] |
S. Aniţa,
Optimal harvesting for a nonlinear age-dependent population dynamics, J. Math. Anal. Appl., 226 (1998), 6-22.
doi: 10.1006/jmaa.1998.6064. |
[6] |
S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Theory and Applications, Kluwer Academic Publishers, Dordrecht, 2000.
doi: 10.1007/978-94-015-9436-3. |
[7] |
S. Aniţa and N. Hegoburu, Null controllability via comparison results for nonlinear age-structured population dynamics, Mathematics of Control, Signals, and Systems, 31 (2019), Art. 2, 38pp.
doi: 10.1007/s00498-019-0232-x. |
[8] |
S. Aniţa, M. Iannelli, M.-Y. Kim and E.-J. Park,
Optimal harvesting for periodic age-dependent population dynamics, SIAM J. Appl. Math., 58 (1998), 1648-1666.
doi: 10.1137/S0036139996301180. |
[9] |
J. Apraiz and L. Escauriaza,
Null-control and measurable sets, ESAIM Control Optim. Calc. Var.), 19 (2013), 239-254.
doi: 10.1051/cocv/2012005. |
[10] |
J. Apraiz, L. Escauriaza, G. Wang and C. Zhang,
Observability inequalities and measurable sets, J. Eur. Math. Soc. (JEMS), 16 (2014), 2433-2475.
doi: 10.4171/JEMS/490. |
[11] |
V. Barbu and M. Iannelli,
Optimal control of population dynamics, J. Optim. Theory Appl., 102 (1999), 1-14.
doi: 10.1023/A:1021865709529. |
[12] |
V. Barbu, M. Iannelli and M. Martcheva,
On the controllability of the Lotka-McKendrick model of population dynamics, J. Math. Anal. Appl., 253 (2001), 142-165.
doi: 10.1006/jmaa.2000.7075. |
[13] |
M. Brokate,
Pontryagin's principle for control problems in age-dependent population dynamics, J. Math. Biol., 23 (1985), 75-101.
doi: 10.1007/BF00276559. |
[14] |
B. Z. Guo and W. L. Chan,
On the semigroup for age dependent population dynamics with spatial diffusion, J. Math. Anal. Appl., 184 (1994), 190-199.
doi: 10.1006/jmaa.1994.1193. |
[15] |
N. Hegoburu, P. Magal and M. Tucsnak,
Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750.
doi: 10.1137/16M1103087. |
[16] |
N. Hegoburu and M. Tucsnak,
Null controllability of the Lotka-McKendrick system with spatial diffusion, Math. Control Relat. Fields, 8 (2018), 707-720.
|
[17] |
N. Hritonenko and Y. Yatsenko,
The structure of optimal time- and age-dependent harvesting in the Lotka-McKendrik population model, Math. Biosci., 208 (2007), 48-62.
doi: 10.1016/j.mbs.2006.09.008. |
[18] |
N. Hritonenko, Y. Yatsenko, R.-U. Goetz and A. Xabadia, A bang–bang regime in optimal harvesting of size-structured populations, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), e2331–e2336. |
[19] |
W. Huyer,
Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion, Semigroup Forum, 49 (1994), 99-114.
doi: 10.1007/BF02573475. |
[20] |
M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori in Pisa, 1995. |
[21] |
H. Inaba, Age-structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017.
doi: 10.1007/978-981-10-0188-8. |
[22] |
F. Kappel and K. Zhang,
Approximation of linear age-structured population models using Legendre polynomials, J. Math. Anal. Appl., 180 (1993), 518-549.
doi: 10.1006/jmaa.1993.1414. |
[23] |
O. Kavian and O. Traore,
Approximate controllability by birth control for a nonlinear population dynamics model, ESAIM Control Optim. Calc. Var., 17 (2011), 1198-1213.
doi: 10.1051/cocv/2010043. |
[24] |
G. Lebeau and L. Robbiano,
Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.
doi: 10.1080/03605309508821097. |
[25] |
G. Lebeau and L. Robbiano,
Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491.
|
[26] |
J.-L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris; Gauthier-Villars, Paris, 1968. |
[27] |
Q. Lü,
Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations, Acta Math. Sin. (Engl. Ser.), 26 (2010), 2377-2386.
doi: 10.1007/s10114-010-9051-1. |
[28] |
Q. Lü,
A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273.
doi: 10.1051/cocv/2012008. |
[29] |
D. Maity, On the null controllability of the Lotka-Mckendrick system, working paper, 2018. |
[30] |
D. Maity, M. Tucsnak and E. Zuazua,
Controllability and positivity constraints in population dynamics with age structuring and diffusion, Journal de Mathématiques Pures et Appliquées, 129 (2019), 153-179.
doi: 10.1016/j.matpur.2018.12.006. |
[31] |
N. Medhin,
Optimal harvesting in age-structured populations, J. Optim. Theory Appl., 74 (1992), 413-423.
doi: 10.1007/BF00940318. |
[32] |
S. Micu, I. Roventa and M. Tucsnak,
Time optimal boundary controls for the heat equation, Journal of Functional Analysis, 263 (2012), 25-49.
doi: 10.1016/j.jfa.2012.04.009. |
[33] |
Y. Netrusov and Y. Safarov,
Weyl asymptotic formula for the Laplacian on domains with rough boundaries, Comm. Math. Phys., 253 (2005), 481-509.
doi: 10.1007/s00220-004-1158-8. |
[34] |
J. Song, J. Y. Yu, X. Z. Zhang, S. J. Hu, Z. X. Zhao, J. Q. Liu and D. X. Feng,
Spectral properties of population operator and asymptotic behaviour of population semigroup, Acta Math. Sci. (English Ed.), 2 (1982), 139-148.
doi: 10.1016/S0252-9602(18)30629-5. |
[35] |
O. Traore, Null controllability of a nonlinear population dynamics problem, Int. J. Math. Math. Sci., 2006 (2006), Art. ID 49279, 20pp.
doi: 10.1155/IJMMS/2006/49279. |
[36] |
G. Wang,
$L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701-1720.
doi: 10.1137/060678191. |
[37] |
G. Wang and C. Zhang,
Observability inequalities from measurable sets for some abstract evolution equations, SIAM J. Control Optim., 55 (2017), 1862-1886.
doi: 10.1137/15M1051907. |
[38] |
G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker, Inc., New York, Dordrecht, 1985. |
[39] |
J. Zabczyk,
Remarks on the algebraic Riccati equation in Hilbert space, Appl. Math. Optim., 2 (1975/76), 251-258.
doi: 10.1007/BF01464270. |

[1] |
Karl Kunisch, Lijuan Wang. The bang-bang property of time optimal controls for the Burgers equation. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3611-3637. doi: 10.3934/dcds.2014.34.3611 |
[2] |
Karl Kunisch, Lijuan Wang. Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 279-302. doi: 10.3934/dcds.2016.36.279 |
[3] |
Gengsheng Wang, Yubiao Zhang. Decompositions and bang-bang properties. Mathematical Control and Related Fields, 2017, 7 (1) : 73-170. doi: 10.3934/mcrf.2017005 |
[4] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[5] |
Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547 |
[6] |
Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial and Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443 |
[7] |
M. Soledad Aronna, J. Frédéric Bonnans, Andrei V. Dmitruk, Pablo A. Lotito. Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 511-546. doi: 10.3934/naco.2012.2.511 |
[8] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[9] |
Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations and Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81 |
[10] |
Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589 |
[11] |
Zhen-Zhen Tao, Bing Sun. Space-time spectral methods for a fourth-order parabolic optimal control problem in three control constraint cases. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022080 |
[12] |
Zhen Wu, Feng Zhang. Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control and Related Fields, 2022, 12 (2) : 475-493. doi: 10.3934/mcrf.2021031 |
[13] |
Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266 |
[14] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[15] |
Sebastian Aniţa, Ana-Maria Moşsneagu. Optimal harvesting for age-structured population dynamics with size-dependent control. Mathematical Control and Related Fields, 2019, 9 (4) : 607-621. doi: 10.3934/mcrf.2019043 |
[16] |
J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131 |
[17] |
Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1 |
[18] |
Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764 |
[19] |
Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333 |
[20] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]