-
Previous Article
Optimality conditions in variational form for non-linear constrained stochastic control problems
- MCRF Home
- This Issue
-
Next Article
Implicit parametrizations and applications in optimization and control
Sparse optimal control for the heat equation with mixed control-state constraints
1. | Departamento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Telecomunicación, Universidad de Cantabria, 39005 Santander, Spain |
2. | Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany |
A problem of sparse optimal control for the heat equation is considered, where pointwise bounds on the control and mixed pointwise control-state constraints are given. A standard quadratic tracking type functional is to be minimized that includes a Tikhonov regularization term and the $ L^1 $-norm of the control accounting for the sparsity. Special emphasis is laid on existence and regularity of Lagrange multipliers for the mixed control-state constraints. To this aim, a duality theorem for linear programming problems in Hilbert spaces is proved and applied to the given optimal control problem.
References:
[1] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[2] |
E. Casas, R. Herzog and G. Wachsmuth,
Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$ cost functional, SIAM J. Optim., 22 (2012), 795-820.
doi: 10.1137/110834366. |
[3] |
R. C. Grinold,
Continuous programming. I. Linear objectives, J. Math. Anal. Appl., 28 (1969), 32-51.
doi: 10.1016/0022-247X(69)90106-1. |
[4] |
R. C. Grinold,
Symmetric duality for continuous linear programs, SIAM J. Appl. Math., 18 (1970), 84-97.
doi: 10.1137/0118011. |
[5] |
J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-24828-6. |
[6] |
W. Krabs,
Zur Dualitätstheorie bei linearen Optimierungsproblemen in halbgeordneten Vektorräumen, Math. Z., 121 (1971), 320-328.
doi: 10.1007/BF01109978. |
[7] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I., 1968. |
[8] |
J.-L. Lions, Contrôle Optimal de Systèmes Gouvernès par des Équations aux Dérivées Partielles, Avant Propos de P. Lelong Dunod, Paris, Gauthier-Villars, Paris, 1968. |
[9] |
D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969. |
[10] |
A. Rösch and F. Tröltzsch,
On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints, SIAM J. Control and Optimization, 46 (2007), 1098-1115.
doi: 10.1137/060671565. |
[11] |
F. Tröltzsch,
Existenz- und Dualitätsaussagen für lineare Optimierungsaufgaben in reflexiven Banach-Räumen., Math. Operationsforschung und Statistik, 6 (1975), 901-912.
doi: 10.1080/02331887508801268. |
[12] |
F. Tröltzsch,
A minimum principle and a generalized bang-bang-principle for a distributed optimal control problem with constraints on the control and the state, Z. Angew. Math. Mech., 59 (1979), 737-739.
doi: 10.1002/zamm.19790591208. |
[13] |
W. F. Tyndall,
A duality theorem for a class of continuous linear programming problems, J. Soc. Indust. Appl. Math., 13 (1965), 644-666.
doi: 10.1137/0113043. |
show all references
References:
[1] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[2] |
E. Casas, R. Herzog and G. Wachsmuth,
Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$ cost functional, SIAM J. Optim., 22 (2012), 795-820.
doi: 10.1137/110834366. |
[3] |
R. C. Grinold,
Continuous programming. I. Linear objectives, J. Math. Anal. Appl., 28 (1969), 32-51.
doi: 10.1016/0022-247X(69)90106-1. |
[4] |
R. C. Grinold,
Symmetric duality for continuous linear programs, SIAM J. Appl. Math., 18 (1970), 84-97.
doi: 10.1137/0118011. |
[5] |
J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-24828-6. |
[6] |
W. Krabs,
Zur Dualitätstheorie bei linearen Optimierungsproblemen in halbgeordneten Vektorräumen, Math. Z., 121 (1971), 320-328.
doi: 10.1007/BF01109978. |
[7] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I., 1968. |
[8] |
J.-L. Lions, Contrôle Optimal de Systèmes Gouvernès par des Équations aux Dérivées Partielles, Avant Propos de P. Lelong Dunod, Paris, Gauthier-Villars, Paris, 1968. |
[9] |
D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969. |
[10] |
A. Rösch and F. Tröltzsch,
On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints, SIAM J. Control and Optimization, 46 (2007), 1098-1115.
doi: 10.1137/060671565. |
[11] |
F. Tröltzsch,
Existenz- und Dualitätsaussagen für lineare Optimierungsaufgaben in reflexiven Banach-Räumen., Math. Operationsforschung und Statistik, 6 (1975), 901-912.
doi: 10.1080/02331887508801268. |
[12] |
F. Tröltzsch,
A minimum principle and a generalized bang-bang-principle for a distributed optimal control problem with constraints on the control and the state, Z. Angew. Math. Mech., 59 (1979), 737-739.
doi: 10.1002/zamm.19790591208. |
[13] |
W. F. Tyndall,
A duality theorem for a class of continuous linear programming problems, J. Soc. Indust. Appl. Math., 13 (1965), 644-666.
doi: 10.1137/0113043. |
[1] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[2] |
Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial and Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311 |
[3] |
Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505 |
[4] |
Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174 |
[5] |
Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations and Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35 |
[6] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[7] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 |
[8] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[9] |
Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021 |
[10] |
Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial and Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247 |
[11] |
Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629 |
[12] |
Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021 |
[13] |
Gero Friesecke, Felix Henneke, Karl Kunisch. Frequency-sparse optimal quantum control. Mathematical Control and Related Fields, 2018, 8 (1) : 155-176. doi: 10.3934/mcrf.2018007 |
[14] |
Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579 |
[15] |
M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297 |
[16] |
Nidhal Gammoudi, Hasnaa Zidani. A differential game control problem with state constraints. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022008 |
[17] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control and Related Fields, 2021, 11 (3) : 555-578. doi: 10.3934/mcrf.2021012 |
[18] |
Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523 |
[19] |
Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial and Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503 |
[20] |
Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations and Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]