Article Contents
Article Contents

# Optimal periodic control for scalar dynamics under integral constraint on the input

Dedicated to Prof. Dr. Frédéric Bonnans on the occasion of his 60th birthday

• This paper studies a periodic optimal control problem governed by a one-dimensional system, linear with respect to the control $u$, under an integral constraint on $u$. We give conditions for which the value of the cost function at steady state with a constant control $\bar u$ can be improved by considering periodic control $u$ with average value equal to $\bar u$. This leads to the so-called "over-yielding" met in several applications. With the use of the Pontryagin Maximum Principle, we provide the optimal synthesis of periodic strategies under the integral constraint. The results are illustrated on a single population model in order to study the effect of periodic inputs on the utility of the stock of resource.

Mathematics Subject Classification: 49J15, 49K15, 34C25, 49N20, 49J30.

 Citation:

• Figure 1.  Functions $\gamma = \psi\circ \ell^{-1}$ and $\hat\gamma$ defined above

Figure 2.  $T$-periodic solutions $x(\cdot,u^-,\bar x)$ and $x(\cdot,u^+,\bar x)$

Figure 3.  The solution $\tilde x$ in thick line, $x$ in thin line

Figure 4.  Optimal criterion $J_{T}(\hat u_{T})$ (left) and $x_m$, $x_M$ (right) as functions of the period $T$ for the logistic growth

Figure 5.  Graphs of the functions $h$ (left) and $\psi$ (right) for $r = 0.3$, $K = 5$, $\alpha = 2.5$, $E_{max} = 0.5893$, $E^\star = 0.6235$

Figure 6.  Optimal criterion $J_{T}(\hat u_{T})$ (left) and $x_m$, $x_M$ (right) as functions of the period $T$ for the depensation model (case 1)

Figure 7.  Plot of the function $F$ defined by (22) (left), and $x_m$, $x_M$, $x_T^-$, $x_T^+$ (right) as functions of the period $T$ $(T<6)$ for the depensation model (case 2)

Figure 8.  Optimal criterion $J_{T}(\hat u_{T})$ for the depensation model (case 2)

•  [1] E.-M. Abulesz and G. Lyberatos, Periodic impulse-forcing of nonlinear systems: A new method, International Journal of Control, 48 (1988), 469-480.  doi: 10.1080/00207178808906191. [2] E.-M. Abulesz and G. Lyberatos, Periodic optimization of microbial growth processes, Biotechnology and Bioengineering, 29 (1987), 1059-1067.  doi: 10.1002/bit.260290904. [3] E. M. Abulesz and G. Lyberatos, Periodic operation of a continuous culture of Baker's yeast, Biotechnology and Bioengineering, 34 (1989), 741-749.  doi: 10.1002/bit.260340603. [4] A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: Age structured optimal control approach, Math. Model. Nat. Phenom., 9 (2014), 20-37.  doi: 10.1051/mmnp/20149403. [5] D. S. Bernstein and E. G. Gilbert, Optimal periodic control: The $\pi$ test revisited, IEEE Transactions on Automatic Control, 25 (1980), 673-684.  doi: 10.1109/TAC.1980.1102394. [6] S. Bittanti, G. Fronza and G. Guardabassi, Periodic control: A frequency domain approach, IEEE Transactions on Automatic Control, 18 (1973), 33-38.  doi: 10.1109/tac.1973.1100225. [7] S. Bittanti, A. Locatelli and C. Maffezzoni, Second-variation methods in periodic optimization, J. Optimization Theory and Appl., 14 (1974), 31-49.  doi: 10.1007/BF00933173. [8] G. Guardabassi, A. Locatelli and S. Rinaldi, Status of periodic optimization of dynamical systems, J. Optimization Theory and Appl., 14 (1974), 1-20.  doi: 10.1007/BF00933171. [9] L. Cesari, Optimization-Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics (New York), 17. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4613-8165-5. [10] C. W. Clark, Mathematical Bioeconomics: The Mathematics of Conservation, Third edition, Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2010. [11] R. T. Evans, J. L. Speyer and C.-H. Chuang, Solution of a periodic optimal control problem by asymptotic series, J. Optimization Theory and Appl., 52 (1987), 343-364.  doi: 10.1007/BF00938212. [12] E. G. Gilbert, Optimal periodic control: A general theory of necessary conditions, SIAM J. Control Optim., 15 (1977), 717-746.  doi: 10.1137/0315046. [13] J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganisms Cultures, ISTE, London, John Wiley & Sons, Inc., Hoboken, NJ, 2017. [14] V. Hatzimanikatis, G. Lyberatos, S. Pavlou and S. A. Svoronos, A method for pulsed periodic optimization of chemical reaction systems, Chemical Engineering Science, 48 (1993), 789-797.  doi: 10.1016/0009-2509(93)80144-F. [15] L. Idels, Stability analysis of periodic Fox production models, Can. Appl. Math. Q., 14 (2006), 331-341. [16] L. Idels and M. Wang, Harvesting strategies with modified effort function, Intern. J. of Modelling, Identification and Control, Special Issue "Modeling Complex Systems" (IJMIC), 3 (2008), 83-87. [17] C. Maffezzoni, Hamilton-Jacobi theory for periodic control problems, J. Optimization Theory and Appl., 14 (1974), 21-29.  doi: 10.1007/BF00933172. [18] L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3. [19] L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, Pergamon Press Book, The Macmillan Co., New York, 1964. [20] J. L. Speyer and R. T. Evans, A second variation theory for optimal periodic processes, IEEE Transactions on Automatic Control, 29 (1984), 138-148.  doi: 10.1109/TAC.1984.1103482. [21] Q. H. Wang and J. L. Speyer, Necessary and sufficient conditions for local optimality of a periodic process, SIAM J. Control Optim., 28 (1990), 482-497.  doi: 10.1137/0328027.

Figures(8)