\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations

  • * Corresponding author: Abdeladim El Akri

    * Corresponding author: Abdeladim El Akri 

The first author would like to thank S. Micu for fruitful discussions on several parts of this paper during his visit to Craiova University

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we treat the problem of uniform exact boundary controllability for the finite-difference space semi-discretization of the $ 1 $-$ d $ coupled wave equations with a control acting only in one equation. First, we show how, after filtering the high frequencies of the discrete initial data in an appropriate way, we can construct a sequence of uniformly (with respect to the mesh size) bounded controls. Thus, we prove that the weak limit of the aforementioned sequence is a control for the continuous system. The proof of our results is based on the moment method and on the construction of an explicit biorthogonal sequence.

    Mathematics Subject Classification: Primary: 93B05, 35L05, 30E05; Secondary: 65M06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., 42 (2003), 871-906.  doi: 10.1137/S0363012902402608.
    [2] F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl., 99 (2013), 544-576.  doi: 10.1016/j.matpur.2012.09.012.
    [3] D. S. Almeida JúniorA. J. A. Ramos and M. L. Santos, Observability inequality for the finite-difference semi-discretization of the 1-d coupled wave equations, Adv. Comput. Math., 41 (2015), 105-130.  doi: 10.1007/s10444-014-9351-6.
    [4] S. AvdoninA. Choque Rivero and L. de Teresa, Exact boundary controllability of coupled hyperbolic equations, Int. J. Appl. Math. Comput. Sci., 23 (2013), 701-709.  doi: 10.2478/amcs-2013-0052.
    [5] H. BouslousH. El Boujaoui and L. Maniar, Uniform boundary stabilization for the finite difference semi-discretization of 2-D wave equation, Afr. Mat., 25 (2014), 623-643.  doi: 10.1007/s13370-013-0141-y.
    [6] I. F. BugariuS. Micu and I. Rovenţa, Approximation of the controls for the beam equation with vanishing viscosity, Math. Comp., 85 (2016), 2259-2303.  doi: 10.1090/mcom/3064.
    [7] C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413-462.  doi: 10.1007/s00211-005-0651-0.
    [8] A. El Akri and L. Maniar, Indirect boundary observability of semi-discrete coupled wave equations, Electron. J. Differential Equations, 2018 (2018), 27 pp.
    [9] H. El BoujaouiH. Bouslous and L. Maniar, Uniform boundary stabilization for the finite difference discretization of the 1-D wave equation, Afr. Mat., 27 (2016), 1239-1262.  doi: 10.1007/s13370-016-0406-3.
    [10] S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, Springer Briefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-5808-1.
    [11] H. O. Fattorini, Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, New Trends in Systems Analysis, Lecture Notes in Control and Inform. Sci., Springer, Berlin, 2 (1977), 111-124. 
    [12] H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43 (1971), 272-292.  doi: 10.1007/BF00250466.
    [13] R. Glowinski and C. H. Li, On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 135-142. 
    [14] R. GlowinskiC. H. Li and J. L. Lions, A numerical approach to the exact boundary controllability of the wave equation I: Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.  doi: 10.1007/BF03167891.
    [15] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Classics in Mathematics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.
    [16] J. A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation, Math. Model. Num. Ann., 33 (1999), 407-438.  doi: 10.1051/m2an:1999123.
    [17] J.-L. Lions, Contrôlabilité Exacte Perturbations et Stabilisation de Systémes Distribués, Tome 1: Contrôlabilité Exacte, Recherches en Mathématiques Appliquées, 9. Masson, Paris, 1988.
    [18] P. Lissy, Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory, Math. Control Relat. Fields, 7 (2017), 21-40.  doi: 10.3934/mcrf.2017002.
    [19] P. Lissy and I. Rovenţa, Optimal filtration for the approximation of boundary controls for the one-dimensional wave equation, Math. Comp., 88 (2019), 273-291.  doi: 10.1090/mcom/3345.
    [20] S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation, Numer. Math., 91 (2002), 723-768.  doi: 10.1007/s002110100338.
    [21] S. Micu, Uniform boundary controllability of a semidiscrete 1-D wave equation with vanishing viscosity, SIAM J. Control Optim., 47 (2008), 2857-2885.  doi: 10.1137/070696933.
    [22] S. Micu, I. Rovenţa and L. E. Temereancǎ, Approximation of the controls for the linear beam equation, Math. Control Signals Syst., 28 (2016), Art. 12, 53 pp. doi: 10.1007/s00498-016-0161-x.
    [23] W. Rudin, Real and Complex Analysis, Second edition, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.
    [24] E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, 2nd edition, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.
    [25] L. T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the $1-d$ wave equation, Adv Comput. Math., 26 (2007), 337-365.  doi: 10.1007/s10444-004-7629-9.
    [26] R. M. YoungAn Introduction to Nonharmonic Fourier Series, Pure and Applied Mathematics, 93. Academic Press, Inc., New York-London, 1980. 
  • 加载中
SHARE

Article Metrics

HTML views(1398) PDF downloads(478) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return