• Previous Article
    Stochastic impulse control Problem with state and time dependent cost functions
  • MCRF Home
  • This Issue
  • Next Article
    Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach
December  2020, 10(4): 827-854. doi: 10.3934/mcrf.2020021

On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian

1. 

Dipartimento di Matematica e Applicazioni 'R.Caccioppoli', Università di Napoli Federico Ⅱ - Complesso Universitario di Monte S. Angelo, via Cintia 80126, Napoli, Italy

2. 

Department of Differential Equations, Oles Honchar Dnipro National University, Gagarin av., 72, Dnipro, 49010, Ukraine

3. 

Dipartimento di Matematica e Applicazioni 'R.Caccioppoli', Università di Napoli Federico Ⅱ - Complesso Universitario di Monte S. Angelo, via Cintia 80126, Napoli, Italy

* Corresponding author: Gabriella Zecca

Received  July 2019 Revised  December 2019 Published  March 2020

We study an optimal control problem for a quasi-linear elliptic equation with anisotropic p-Laplace operator in its principal part and $ L^1 $-control in coefficient of the low-order term. We assume that the matrix of anisotropy belongs to BMO-space. Since we cannot expect to have a solution of the state equation in the classical Sobolev space, we introduce a suitable functional class in which we look for solutions and prove existence of optimal pairs using an approximation procedure and compactness arguments in variable spaces.

Citation: Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021
References:
[1]

D. J. Bergman and D. Stroud, Physical properties of macroscopically inhomogeneous media, North–HollaSolid State Physics, 46 (1992), 147-269.   Google Scholar

[2]

M. Briane and J. Casado-Diaz, Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients, J. of Diff. Equa., 245 (2008), 2038-2054.  doi: 10.1016/j.jde.2008.07.027.  Google Scholar

[3]

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, , Birkhäuser, 2005. Google Scholar

[4]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Diff. Equa. Appl., 7 (2000), 187-199.   Google Scholar

[5]

E. CasasR. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$-cost functional, SIAM Journal on Optimization, 22 (2012), 795-820.  doi: 10.1137/110834366.  Google Scholar

[6]

V. Chiadò Piat and F. Serra Cassano, Some remarks about the density of smooth functions in weighted Sobolev spaces, J. Convex Analysis, 1 (1994), 135-142.   Google Scholar

[7]

M. Chicco and M. Venturino, Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain, Annali di Matematica Pura ed Applicata, 178 (2000), 325-338.  doi: 10.1007/BF02505902.  Google Scholar

[8]

C. D'ApiceU. De MaioP. I. Kogut and R. Manzo, Solvability of an optimal control problem in coefficients for ill-posed elliptic boundary value problems, Electronic Journal of Differential Equations, 2014 (2014), 1-23.   Google Scholar

[9]

C. D'ApiceU. De Maio and O. P. Kogut, Optimal control problems in coefficients for degenerate equations of monotone type: shape stability and attainability problems, SIAM J. Control Optim., 50 (2012), 1174-1199.  doi: 10.1137/100815761.  Google Scholar

[10]

C. D'ApiceU. De Maio and O. P. Kogut, On shape stability of Dirichlet optimal control problems in coefficients for nonlinear elliptic equations, Adv. Differential Equations, 15 (2010), 689-720.   Google Scholar

[11]

P. Di Gironimo and G. Zecca, Sobolev-Zygmund solutions for nonlinear elliptic equations with growth coefficients in BMO, Submitted. Google Scholar

[12]

P. Drabek, A. Kufner and F. Nicolosi, Non Linear Elliptic Equations, Singular and Degenerate Cases, (Walter de Cruyter, 1997). Google Scholar

[13]

T. DuranteO. P. Kupenko and R. Manzo, On attainability of optimal controls in coefficients for system of Hammerstein type with anisotropic p-Laplacian, Ricerche di Matematica, 66 (2017), 259-292.  doi: 10.1007/s11587-016-0300-1.  Google Scholar

[14]

F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.  doi: 10.1002/cpa.3160140317.  Google Scholar

[15]

T. Horsin and P. I. Kogut, Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I.Existence result, Mathematical Control and Related Fields, 5 (2015), 73-96.  doi: 10.3934/mcrf.2015.5.73.  Google Scholar

[16]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems, Asymptotic Analysis, 98 (2016), 155-188.  doi: 10.3233/ASY-161365.  Google Scholar

[17]

F. W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130 (1973), 265-277.  doi: 10.1007/BF02392268.  Google Scholar

[18]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 2105-2133.  doi: 10.3934/dcds.2014.34.2105.  Google Scholar

[19]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, , Series: Systems and Control, Birkhäuser Verlag, 2011. doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[20]

P. I. Kogut and G. Leugering, Matrix-valued $L^1$-optimal control in the coefficients of linear elliptic problems, Journal for Analysis and its Applications (ZAA), 32 (2013), 433-456.  doi: 10.4171/ZAA/1493.  Google Scholar

[21]

O. P. Kupenko and R. Manzo, Approximation of an optimal control problem in coefficient for variational inequality with anisotropic p-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), 1-18.  doi: 10.1007/s00030-016-0387-9.  Google Scholar

[22]

O. P. Kupenko and R. Manzo, On optimal controls in coefficients for ill-posed non-linear elliptic dirichlet bounday value problems, Discrete and Continuous Dynamical Systems Journal, series B, (2018). Google Scholar

[23]

G. I. Laptev, Monotonicity conditions for a class of quasilinear differential operators depending on parameters, Math. Notes, 96 (2014), 379-390.   Google Scholar

[24]

S. LeftkimmiatisA. Bourquard and M. Unser, Hessian-based norm regularization for image restoration with biomedical applications, IEEE Trans. on Image Process., 21 (2012), 983-995.  doi: 10.1109/TIP.2011.2168232.  Google Scholar

[25]

O. Levy and R. V. Kohn, Duality relations for non-ohmic composites, with applications to behavior near percolation, J. Statist. Phys., 90 (1998), 159-189.  doi: 10.1023/A:1023251701546.  Google Scholar

[26]

V. G. Maz'ya, On cetrtain integral inequalities for functions of many variables, J. Soviet Math., 1 (1973), 205-234.   Google Scholar

[27]

S. E. Pastukhova, Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems, Sbornik: Mathematics, 198 (2007), 1465-1494.  doi: 10.1070/SM2007v198n10ABEH003892.  Google Scholar

[28]

I. Peral, Multiplicity of Solutions for the $P$-Laplacian, , Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997. Google Scholar

[29]

F. Punzo and A. Tesei, Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients, Ann. I.H. Poincaré, 26 (2009), 2001-2024.  doi: 10.1016/j.anihpc.2009.04.005.  Google Scholar

[30]

T. Radice, Regularity result for nondivergence elliptic equations with unbounded coefficients, Diff. Integral Equa., 23 (2010), 989-1000.   Google Scholar

[31]

T. Radice and G. Zecca, Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients, Ricerche Mat., 63 (2014), 355-267.  doi: 10.1007/s11587-014-0202-z.  Google Scholar

[32]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, , Birkhäuser, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[33]

E. Saacson and H. B. Keller, Analysis of Numerical Methods, , Wiley, 1966.  Google Scholar

[34]

M. V. Safonov, Non-divergence elliptic equations of second order with unbounded drift, Nonlinear Partial Diff. Equa. and Related Topics, 229 (2010), 211-232.   Google Scholar

[35]

Ch. Schneider and W. Alt, Regularization of linear-quadratic control problems with $L^1$-control cost, In: Pötzsche C., Heuberger C., Kaltenbacher B., Rendl F. (eds) System Modeling and Optimization. CSMO 2013. IFIP Advances in Information and Communication Technology, Springer, Berlin, Heidelberg, 443 (2014). Google Scholar

[36]

G. Stampacchia, Èquations Elliptiques du Second Ordre à Coefficients Discontinus, Les Presses de L'Universite de Montreal, 1966.  Google Scholar

[37]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms, Functional Analysis and Its Applications, 38 (2004), 173-183.  doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

[38]

V. V. Zhikov and S. E. Pastukhova, Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent, Mat. Sb., 199 (2008), 19–52; translation in Sb. Math., 199 (2008), 1751–1782. doi: 10.1070/SM2008v199n12ABEH003980.  Google Scholar

[39]

G. Zecca, An optimal control problem for nonlinear elliptic equations with unbounded coefficients, Discrete and Continous Dynamical Systems, Series B, 24 (2019), 1393-1409.  doi: 10.3934/dcdsb.2019021.  Google Scholar

show all references

References:
[1]

D. J. Bergman and D. Stroud, Physical properties of macroscopically inhomogeneous media, North–HollaSolid State Physics, 46 (1992), 147-269.   Google Scholar

[2]

M. Briane and J. Casado-Diaz, Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients, J. of Diff. Equa., 245 (2008), 2038-2054.  doi: 10.1016/j.jde.2008.07.027.  Google Scholar

[3]

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, , Birkhäuser, 2005. Google Scholar

[4]

P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Diff. Equa. Appl., 7 (2000), 187-199.   Google Scholar

[5]

E. CasasR. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$-cost functional, SIAM Journal on Optimization, 22 (2012), 795-820.  doi: 10.1137/110834366.  Google Scholar

[6]

V. Chiadò Piat and F. Serra Cassano, Some remarks about the density of smooth functions in weighted Sobolev spaces, J. Convex Analysis, 1 (1994), 135-142.   Google Scholar

[7]

M. Chicco and M. Venturino, Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain, Annali di Matematica Pura ed Applicata, 178 (2000), 325-338.  doi: 10.1007/BF02505902.  Google Scholar

[8]

C. D'ApiceU. De MaioP. I. Kogut and R. Manzo, Solvability of an optimal control problem in coefficients for ill-posed elliptic boundary value problems, Electronic Journal of Differential Equations, 2014 (2014), 1-23.   Google Scholar

[9]

C. D'ApiceU. De Maio and O. P. Kogut, Optimal control problems in coefficients for degenerate equations of monotone type: shape stability and attainability problems, SIAM J. Control Optim., 50 (2012), 1174-1199.  doi: 10.1137/100815761.  Google Scholar

[10]

C. D'ApiceU. De Maio and O. P. Kogut, On shape stability of Dirichlet optimal control problems in coefficients for nonlinear elliptic equations, Adv. Differential Equations, 15 (2010), 689-720.   Google Scholar

[11]

P. Di Gironimo and G. Zecca, Sobolev-Zygmund solutions for nonlinear elliptic equations with growth coefficients in BMO, Submitted. Google Scholar

[12]

P. Drabek, A. Kufner and F. Nicolosi, Non Linear Elliptic Equations, Singular and Degenerate Cases, (Walter de Cruyter, 1997). Google Scholar

[13]

T. DuranteO. P. Kupenko and R. Manzo, On attainability of optimal controls in coefficients for system of Hammerstein type with anisotropic p-Laplacian, Ricerche di Matematica, 66 (2017), 259-292.  doi: 10.1007/s11587-016-0300-1.  Google Scholar

[14]

F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.  doi: 10.1002/cpa.3160140317.  Google Scholar

[15]

T. Horsin and P. I. Kogut, Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I.Existence result, Mathematical Control and Related Fields, 5 (2015), 73-96.  doi: 10.3934/mcrf.2015.5.73.  Google Scholar

[16]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems, Asymptotic Analysis, 98 (2016), 155-188.  doi: 10.3233/ASY-161365.  Google Scholar

[17]

F. W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130 (1973), 265-277.  doi: 10.1007/BF02392268.  Google Scholar

[18]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 2105-2133.  doi: 10.3934/dcds.2014.34.2105.  Google Scholar

[19]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, , Series: Systems and Control, Birkhäuser Verlag, 2011. doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[20]

P. I. Kogut and G. Leugering, Matrix-valued $L^1$-optimal control in the coefficients of linear elliptic problems, Journal for Analysis and its Applications (ZAA), 32 (2013), 433-456.  doi: 10.4171/ZAA/1493.  Google Scholar

[21]

O. P. Kupenko and R. Manzo, Approximation of an optimal control problem in coefficient for variational inequality with anisotropic p-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), 1-18.  doi: 10.1007/s00030-016-0387-9.  Google Scholar

[22]

O. P. Kupenko and R. Manzo, On optimal controls in coefficients for ill-posed non-linear elliptic dirichlet bounday value problems, Discrete and Continuous Dynamical Systems Journal, series B, (2018). Google Scholar

[23]

G. I. Laptev, Monotonicity conditions for a class of quasilinear differential operators depending on parameters, Math. Notes, 96 (2014), 379-390.   Google Scholar

[24]

S. LeftkimmiatisA. Bourquard and M. Unser, Hessian-based norm regularization for image restoration with biomedical applications, IEEE Trans. on Image Process., 21 (2012), 983-995.  doi: 10.1109/TIP.2011.2168232.  Google Scholar

[25]

O. Levy and R. V. Kohn, Duality relations for non-ohmic composites, with applications to behavior near percolation, J. Statist. Phys., 90 (1998), 159-189.  doi: 10.1023/A:1023251701546.  Google Scholar

[26]

V. G. Maz'ya, On cetrtain integral inequalities for functions of many variables, J. Soviet Math., 1 (1973), 205-234.   Google Scholar

[27]

S. E. Pastukhova, Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems, Sbornik: Mathematics, 198 (2007), 1465-1494.  doi: 10.1070/SM2007v198n10ABEH003892.  Google Scholar

[28]

I. Peral, Multiplicity of Solutions for the $P$-Laplacian, , Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997. Google Scholar

[29]

F. Punzo and A. Tesei, Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients, Ann. I.H. Poincaré, 26 (2009), 2001-2024.  doi: 10.1016/j.anihpc.2009.04.005.  Google Scholar

[30]

T. Radice, Regularity result for nondivergence elliptic equations with unbounded coefficients, Diff. Integral Equa., 23 (2010), 989-1000.   Google Scholar

[31]

T. Radice and G. Zecca, Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients, Ricerche Mat., 63 (2014), 355-267.  doi: 10.1007/s11587-014-0202-z.  Google Scholar

[32]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, , Birkhäuser, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[33]

E. Saacson and H. B. Keller, Analysis of Numerical Methods, , Wiley, 1966.  Google Scholar

[34]

M. V. Safonov, Non-divergence elliptic equations of second order with unbounded drift, Nonlinear Partial Diff. Equa. and Related Topics, 229 (2010), 211-232.   Google Scholar

[35]

Ch. Schneider and W. Alt, Regularization of linear-quadratic control problems with $L^1$-control cost, In: Pötzsche C., Heuberger C., Kaltenbacher B., Rendl F. (eds) System Modeling and Optimization. CSMO 2013. IFIP Advances in Information and Communication Technology, Springer, Berlin, Heidelberg, 443 (2014). Google Scholar

[36]

G. Stampacchia, Èquations Elliptiques du Second Ordre à Coefficients Discontinus, Les Presses de L'Universite de Montreal, 1966.  Google Scholar

[37]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms, Functional Analysis and Its Applications, 38 (2004), 173-183.  doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

[38]

V. V. Zhikov and S. E. Pastukhova, Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent, Mat. Sb., 199 (2008), 19–52; translation in Sb. Math., 199 (2008), 1751–1782. doi: 10.1070/SM2008v199n12ABEH003980.  Google Scholar

[39]

G. Zecca, An optimal control problem for nonlinear elliptic equations with unbounded coefficients, Discrete and Continous Dynamical Systems, Series B, 24 (2019), 1393-1409.  doi: 10.3934/dcdsb.2019021.  Google Scholar

[1]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[2]

Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017

[3]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[4]

Olha P. Kupenko, Rosanna Manzo. Shape stability of optimal control problems in coefficients for coupled system of Hammerstein type. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2967-2992. doi: 10.3934/dcdsb.2015.20.2967

[5]

Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019

[6]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[7]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[8]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[9]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[10]

Huyên Pham. Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 7-. doi: 10.1186/s41546-016-0008-x

[11]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[12]

Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure & Applied Analysis, 2017, 16 (3) : 899-914. doi: 10.3934/cpaa.2017043

[13]

Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129

[14]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[15]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[16]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[17]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[18]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[19]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020179

[20]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (49)
  • HTML views (274)
  • Cited by (1)

[Back to Top]