• Previous Article
    On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems
  • MCRF Home
  • This Issue
  • Next Article
    Optimal design problems governed by the nonlocal $ p $-Laplacian equation
March  2021, 11(1): 143-167. doi: 10.3934/mcrf.2020031

Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport

Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy

Received  August 2019 Revised  March 2020 Published  June 2020

The objective of the paper is to contribute to the theory of error-based control systems on Riemannian manifolds. The present study focuses on system where the control field influences the covariant derivative of a control path. In order to define error terms in such systems, it is necessary to compare tangent vectors at different points using parallel transport and to understand how the covariant derivative of a vector field along a path changes after such field gets parallely transported to a different curve. It turns out that such analysis relies on a specific map, termed principal pushforward map. The present paper aims at contributing to the algebraic theory of the principal pushforward map and of its relationship with the curvature endomorphism of a state manifold.

Citation: Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031
References:
[1]

W. Ambrose and I. M. Singer, A theorem on holonomy, Transactions of the American Mathematical Society, 75 (1953), 428-443.  doi: 10.1090/S0002-9947-1953-0063739-1.  Google Scholar

[2]

R. Anirudh, V. Venkataraman and P. Turaga, A generalized Lyapunov feature for dynamical systems on Riemannian manifolds,, Proceedings of the 1st International Workshop on Differential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories, (2015), 4.1–4.10. doi: 10.5244/C.29.DIFFCV.4.  Google Scholar

[3]

A. Bejenaru and C. Udrişte, Multivariate optimal control with payoffs defined by submanifold integrals, Symmetry, 11 (2019), 893. doi: 10.3390/sym11070893.  Google Scholar

[4]

F. BulloR. M. Murray and A. Sarti, Control on the sphere and reduced attitude stabilization, IFAC Proceedings Volumes, 28 (1995), 495-501.  doi: 10.1016/S1474-6670(17)46878-9.  Google Scholar

[5]

J. Casey, Parallel transport of a vector on a surface, Exploring Curvature, (1996), 250–263. Google Scholar

[6]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins' problem for surfaces, Proceedings of the IFAC System, Structure and Control Conference, (2004), 563–565. Google Scholar

[7]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins problem for surfaces. I Nonnegative curvature, Journal of Geometric Analysis, 15 (2005), 565-587.  doi: 10.1007/BF02922245.  Google Scholar

[8]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins problem for surfaces. Ⅱ Negative curvature, SIAM Journal on Control and Optimization, 45 (2006), 457-482.  doi: 10.1137/040619739.  Google Scholar

[9]

R. Dandoloff, Berry's phase and Fermi-Walker parallel transport, Physics Letters A, 139 (1989), 19-20.  doi: 10.1016/0375-9601(89)90599-9.  Google Scholar

[10]

S. Eftekhar AzamS. Mariani and N. K. A. Attari, Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters, Nonlinear Dynamics, 89 (2017), 1489-1511.   Google Scholar

[11]

S. Fiori, On vector averaging over the unit hyphersphere, Digital Signal Processing, 19 (2009), 715-725.   Google Scholar

[12]

S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Fundamentals, Journal of Systems Science and Complexity, 29 (2016), 22-40.  doi: 10.1007/s11424-015-4063-7.  Google Scholar

[13]

S. Fiori, Non-delayed synchronization of non-autonomous dynamical systems on Riemannian manifolds and its applications, Nonlinear Dynamics, 94 (2018), 3077-3100.  doi: 10.1007/s11071-018-4546-x.  Google Scholar

[14]

S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation, Communications in Nonlinear Science and Numerical Simulation, 47 (2017), 207-222.  doi: 10.1016/j.cnsns.2016.11.025.  Google Scholar

[15]

R. FuentesG. Hicks and J. Osborne, The spring paradigm in tracking control of simple mechanical systems, Automatica, 47 (2011), 993-1000.  doi: 10.1016/j.automatica.2011.01.046.  Google Scholar

[16]

F. A. GoodarziD. Lee and T. Lee, Geometric control of a quadrotor UAV transporting a payload connected via flexible cable, International Journal of Control, Automation, and Systems, 13 (2015), 1486-1498.  doi: 10.1007/s12555-014-0304-0.  Google Scholar

[17]

M.-D. Hua, T. Hamel, R. Mahony and J. Trumpf, Gradient-like observer design on the special Euclidean group SE(3) with system outputs on the real projective space, Proceedings of the 54th IEEE Conference on Decision and Control, (2015), 2139–2145. doi: 10.1109/CDC.2015.7402523.  Google Scholar

[18]

M. KabiriH. Atrianfar and M. B. Menhaj, Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances, Nonlinear Dynamics, 90 (2017), 1695-1706.  doi: 10.1007/s11071-017-3759-8.  Google Scholar

[19]

L. M. LopesS. Fernandes and C. Grácio, Complete synchronization and delayed synchronization in couplings, Nonlinear Dynamics, 79 (2015), 1615-1624.  doi: 10.1007/s11071-014-1764-8.  Google Scholar

[20]

L. LüC. LiS. LiuZ. WangJ. Tian and J. Gu, The signal synchronization transmission among uncertain discrete networks with different nodes, Nonlinear Dynamics, 81 (2015), 801-809.   Google Scholar

[21]

C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W.H. Freeman, 1973.  Google Scholar

[22]

A. MortadaP. Kokkonen and Y. Chitour, Rolling manifolds of different dimensions, Acta Applicandae Mathematicae, 139 (2015), 105-131.  doi: 10.1007/s10440-014-9972-2.  Google Scholar

[23]

K. OjoS. Ogunjo and A. Olagundoye, Projective synchronization via active control of identical chaotic oscillators with parametric and external excitation, International Journal of Nonlinear Science, 24 (2017), 76-83.   Google Scholar

[24]

J. M. Osborne and G. P. Hicks, The geodesic spring on the Euclidean sphere with parallel-transport-based damping, Notices of the AMS, 60 (2013), 544-556.  doi: 10.1090/noti997.  Google Scholar

[25]

P. PirasL. TeresiL. TraversettiV. VaranoS. GabrieleT. KotsakisP. RaiaP. E. Puddu and M. Scalici, The conceptual framework of ontogenetic trajectories: parallel transport allows the recognition and visualization of pure deformation patterns, Evolution & Development, 18 (2016), 182-200.  doi: 10.1111/ede.12186.  Google Scholar

[26] W. H. PressS. A. TeukolskyW.T. Vetterling and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Third edition. Cambridge University Press, Cambridge, 2007.   Google Scholar
[27]

H. Reckziegel and E. Wilhelmus, How the curvature generates the holonomy of a connection in an arbitrary fibre bundle, Results in Mathematics, 49 (2006), 339-359.  doi: 10.1007/s00025-006-0228-y.  Google Scholar

[28]

T. SoyfıdanH. Parlatici and M. A. Güngör, On the quaternionic curve according to parallel transport frame, TWMS Journal of Pure and Applied Mathematics, 4 (2013), 194-203.   Google Scholar

[29]

M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Wilmington, Del., 1979.  Google Scholar

[30]

Z. G. Ying and W. Q. Zhu, Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter, Nonlinear Dynamics, 90 (2017), 105-114.  doi: 10.1007/s11071-017-3650-7.  Google Scholar

[31]

W. Yu and Z. Pan, Dynamical equations of multibody systems on Lie groups, Advances in Mechanical Engineering, 7 (2015), 1-9.  doi: 10.1177/1687814015575959.  Google Scholar

[32]

Z. Zhang, Z. Ling and A. Sarlette, Modified integral control globally counters symmetry-breaking biases, Symmetry, 11 (2019), 639. doi: 10.3390/sym11050639.  Google Scholar

[33]

Y. Zou, Adaptive trajectory tracking control approach for a model-scaled helicopter, Nonlinear Dynamics, 83 (2016), 2171-2181.  doi: 10.1007/s11071-015-2473-7.  Google Scholar

show all references

References:
[1]

W. Ambrose and I. M. Singer, A theorem on holonomy, Transactions of the American Mathematical Society, 75 (1953), 428-443.  doi: 10.1090/S0002-9947-1953-0063739-1.  Google Scholar

[2]

R. Anirudh, V. Venkataraman and P. Turaga, A generalized Lyapunov feature for dynamical systems on Riemannian manifolds,, Proceedings of the 1st International Workshop on Differential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories, (2015), 4.1–4.10. doi: 10.5244/C.29.DIFFCV.4.  Google Scholar

[3]

A. Bejenaru and C. Udrişte, Multivariate optimal control with payoffs defined by submanifold integrals, Symmetry, 11 (2019), 893. doi: 10.3390/sym11070893.  Google Scholar

[4]

F. BulloR. M. Murray and A. Sarti, Control on the sphere and reduced attitude stabilization, IFAC Proceedings Volumes, 28 (1995), 495-501.  doi: 10.1016/S1474-6670(17)46878-9.  Google Scholar

[5]

J. Casey, Parallel transport of a vector on a surface, Exploring Curvature, (1996), 250–263. Google Scholar

[6]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins' problem for surfaces, Proceedings of the IFAC System, Structure and Control Conference, (2004), 563–565. Google Scholar

[7]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins problem for surfaces. I Nonnegative curvature, Journal of Geometric Analysis, 15 (2005), 565-587.  doi: 10.1007/BF02922245.  Google Scholar

[8]

Y. Chitour and M. Sigalotti, On the controllability of the Dubins problem for surfaces. Ⅱ Negative curvature, SIAM Journal on Control and Optimization, 45 (2006), 457-482.  doi: 10.1137/040619739.  Google Scholar

[9]

R. Dandoloff, Berry's phase and Fermi-Walker parallel transport, Physics Letters A, 139 (1989), 19-20.  doi: 10.1016/0375-9601(89)90599-9.  Google Scholar

[10]

S. Eftekhar AzamS. Mariani and N. K. A. Attari, Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters, Nonlinear Dynamics, 89 (2017), 1489-1511.   Google Scholar

[11]

S. Fiori, On vector averaging over the unit hyphersphere, Digital Signal Processing, 19 (2009), 715-725.   Google Scholar

[12]

S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Fundamentals, Journal of Systems Science and Complexity, 29 (2016), 22-40.  doi: 10.1007/s11424-015-4063-7.  Google Scholar

[13]

S. Fiori, Non-delayed synchronization of non-autonomous dynamical systems on Riemannian manifolds and its applications, Nonlinear Dynamics, 94 (2018), 3077-3100.  doi: 10.1007/s11071-018-4546-x.  Google Scholar

[14]

S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation, Communications in Nonlinear Science and Numerical Simulation, 47 (2017), 207-222.  doi: 10.1016/j.cnsns.2016.11.025.  Google Scholar

[15]

R. FuentesG. Hicks and J. Osborne, The spring paradigm in tracking control of simple mechanical systems, Automatica, 47 (2011), 993-1000.  doi: 10.1016/j.automatica.2011.01.046.  Google Scholar

[16]

F. A. GoodarziD. Lee and T. Lee, Geometric control of a quadrotor UAV transporting a payload connected via flexible cable, International Journal of Control, Automation, and Systems, 13 (2015), 1486-1498.  doi: 10.1007/s12555-014-0304-0.  Google Scholar

[17]

M.-D. Hua, T. Hamel, R. Mahony and J. Trumpf, Gradient-like observer design on the special Euclidean group SE(3) with system outputs on the real projective space, Proceedings of the 54th IEEE Conference on Decision and Control, (2015), 2139–2145. doi: 10.1109/CDC.2015.7402523.  Google Scholar

[18]

M. KabiriH. Atrianfar and M. B. Menhaj, Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances, Nonlinear Dynamics, 90 (2017), 1695-1706.  doi: 10.1007/s11071-017-3759-8.  Google Scholar

[19]

L. M. LopesS. Fernandes and C. Grácio, Complete synchronization and delayed synchronization in couplings, Nonlinear Dynamics, 79 (2015), 1615-1624.  doi: 10.1007/s11071-014-1764-8.  Google Scholar

[20]

L. LüC. LiS. LiuZ. WangJ. Tian and J. Gu, The signal synchronization transmission among uncertain discrete networks with different nodes, Nonlinear Dynamics, 81 (2015), 801-809.   Google Scholar

[21]

C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W.H. Freeman, 1973.  Google Scholar

[22]

A. MortadaP. Kokkonen and Y. Chitour, Rolling manifolds of different dimensions, Acta Applicandae Mathematicae, 139 (2015), 105-131.  doi: 10.1007/s10440-014-9972-2.  Google Scholar

[23]

K. OjoS. Ogunjo and A. Olagundoye, Projective synchronization via active control of identical chaotic oscillators with parametric and external excitation, International Journal of Nonlinear Science, 24 (2017), 76-83.   Google Scholar

[24]

J. M. Osborne and G. P. Hicks, The geodesic spring on the Euclidean sphere with parallel-transport-based damping, Notices of the AMS, 60 (2013), 544-556.  doi: 10.1090/noti997.  Google Scholar

[25]

P. PirasL. TeresiL. TraversettiV. VaranoS. GabrieleT. KotsakisP. RaiaP. E. Puddu and M. Scalici, The conceptual framework of ontogenetic trajectories: parallel transport allows the recognition and visualization of pure deformation patterns, Evolution & Development, 18 (2016), 182-200.  doi: 10.1111/ede.12186.  Google Scholar

[26] W. H. PressS. A. TeukolskyW.T. Vetterling and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Third edition. Cambridge University Press, Cambridge, 2007.   Google Scholar
[27]

H. Reckziegel and E. Wilhelmus, How the curvature generates the holonomy of a connection in an arbitrary fibre bundle, Results in Mathematics, 49 (2006), 339-359.  doi: 10.1007/s00025-006-0228-y.  Google Scholar

[28]

T. SoyfıdanH. Parlatici and M. A. Güngör, On the quaternionic curve according to parallel transport frame, TWMS Journal of Pure and Applied Mathematics, 4 (2013), 194-203.   Google Scholar

[29]

M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Wilmington, Del., 1979.  Google Scholar

[30]

Z. G. Ying and W. Q. Zhu, Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter, Nonlinear Dynamics, 90 (2017), 105-114.  doi: 10.1007/s11071-017-3650-7.  Google Scholar

[31]

W. Yu and Z. Pan, Dynamical equations of multibody systems on Lie groups, Advances in Mechanical Engineering, 7 (2015), 1-9.  doi: 10.1177/1687814015575959.  Google Scholar

[32]

Z. Zhang, Z. Ling and A. Sarlette, Modified integral control globally counters symmetry-breaking biases, Symmetry, 11 (2019), 639. doi: 10.3390/sym11050639.  Google Scholar

[33]

Y. Zou, Adaptive trajectory tracking control approach for a model-scaled helicopter, Nonlinear Dynamics, 83 (2016), 2171-2181.  doi: 10.1007/s11071-015-2473-7.  Google Scholar

Figure 1.  A mass-spring-damper system
Figure 2.  Depiction of the parallel transport of a tangent vector field from a smooth curve to another
Figure 3.  Exemplification of two curves on a curved manifold $ {{{\mathbb{M}}}} $ that meet at a point $ p $
Figure 4.  Depiction of the homotopic net used in the proof of the Lemma 5.1.
[1]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[4]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[5]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[6]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[7]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[8]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[9]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[10]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[11]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[12]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[13]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[14]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[15]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[16]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[17]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[18]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[19]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[20]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (117)
  • HTML views (255)
  • Cited by (0)

Other articles
by authors

[Back to Top]