
-
Previous Article
Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition
- MCRF Home
- This Issue
-
Next Article
On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems
Fractional optimal control problems on a star graph: Optimality system and numerical solution
1. | Department of Mathematics, Indian Institute of Technology Delhi, 110016, Delhi, India |
2. | Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl Angewandte Mathematik Ⅱ, Cauerstr. 11, 91058 Erlangen, Germany |
In this paper, we study optimal control problems for nonlinear fractional order boundary value problems on a star graph, where the fractional derivative is described in the Caputo sense. The adjoint state and the optimality system are derived for fractional optimal control problem (FOCP) by using the Lagrange multiplier method. Then, the existence and uniqueness of solution of the adjoint equation is proved by means of the Banach contraction principle. We also present a numerical method to find the approximate solution of the resulting optimality system. In the proposed method, the $ L2 $ scheme and the Grünwald-Letnikov formula is used for the approximation of the Caputo fractional derivative and the right Riemann-Liouville fractional derivative, respectively, which converts the optimality system into a system of linear algebraic equations. Two examples are provided to demonstrate the feasibility of the numerical method.
References:
[1] |
O. P. Agrawal,
Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272 (2002), 368-379.
doi: 10.1016/S0022-247X(02)00180-4. |
[2] |
O. P. Agrawal,
A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynamics, 38 (2004), 323-337.
doi: 10.1007/s11071-004-3764-6. |
[3] |
O. P. Agrawal,
Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A: Mathematical and Theoretical, 40 (2007), 6287-6303.
doi: 10.1088/1751-8113/40/24/003. |
[4] |
O. P. Agrawal,
A formulation and numerical scheme for fractional optimal control problems, Journal of Vibration and Control, 14 (2008), 1291-1299.
doi: 10.1177/1077546307087451. |
[5] |
R. Almeida and D. F. M. Torres,
Necessary and sufficient conditions for the fractional calculus of variations with {C}aputo derivatives, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1490-1500.
doi: 10.1016/j.cnsns.2010.07.016. |
[6] |
H. W. Berhe, S. Qureshi and A. A. Shaikh, Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis, Chaos, Solitons & Fractals, 131 (2020), 109536, 13 pp.
doi: 10.1016/j.chaos.2019.109536. |
[7] |
T. Blaszczyk and M. Ciesielski,
Fractional oscillator equation–transformation into integral equation and numerical solution, Applied Mathematics and Computation, 257 (2015), 428-435.
doi: 10.1016/j.amc.2014.12.122. |
[8] |
G. W. Bohannan,
Analog fractional order controller in temperature and motor control applications, Journal of Vibration and Control, 14 (2008), 1487-1498.
doi: 10.1177/1077546307087435. |
[9] |
R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[10] |
A. Debbouche, J. J. Nieto and D. F. M. Torres,
Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, Journal of Optimization Theory and Applications, 174 (2017), 7-31.
doi: 10.1007/s10957-015-0743-7. |
[11] |
T. L. Guo,
The necessary conditions of fractional optimal control in the sense of Caputo, Journal of Optimization Theory and Applications, 156 (2013), 115-126.
doi: 10.1007/s10957-012-0233-0. |
[12] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
doi: 10.1142/9789812817747. |
[13] |
A. A. Kilbas and H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. |
[14] |
D. E. Kirk, Optimal Control Theory: An Introduction, Courier Corporation, 2004. Google Scholar |
[15] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
Modelling and controllability of networks of thin beams, Lect. Notes Control Inf. Sci., 180 (1992), 467-480.
doi: 10.1007/BFb0113314. |
[16] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
Control of planar networks of Timoshenko beams, SIAM J. Control Optim., 31 (1993), 780-811.
doi: 10.1137/0331035. |
[17] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.
doi: 10.1002/mma.1670160503. |
[18] |
J. E. Lagnese and G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser Boston, Inc., Boston, MA, 1994.
doi: 10.1007/978-1-4612-0273-8. |
[19] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
On the analysis and control of hyperbolic systems associated with vibrating networks, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 77-104.
doi: 10.1017/S0308210500029206. |
[20] |
G. Leugering,
On the semi-discretization of optimal control problems for networks of elastic strings:global optimality systems and domain decomposition, J. Comput. Appl. Math., 120 (2000), 133-157.
doi: 10.1016/S0377-0427(00)00307-1. |
[21] |
G. Leugering,
Domain decomposition of an optimal control problem for semi-linear elliptic equations on metric graphs with application to gas networks, Applied Mathematics, 8 (2017), 1074-1099.
doi: 10.4236/am.2017.88082. |
[22] |
C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Taylor and Francis group, 2015.
doi: 10.1201/b18503. |
[23] |
A. A. Lotfi and S. A. Yousefi,
A numerical technique for solving a class of fractional variational problems, Journal of Computational and Applied Mathematics, 237 (2013), 633-643.
doi: 10.1016/j.cam.2012.08.005. |
[24] |
G. Lumer,
Connecting of local operators and evolution equtaions on a network, Lect. Notes Math., 787 (1980), 219-234.
|
[25] |
R. L. Magin and M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, Journal of Vibration and Control, 14 (2008), 1431-1442. Google Scholar |
[26] |
F. Mainardi and P. Paradisi,
Fractional diffusive waves, Journal of Computational Acoustics, 9 (2001), 1417-1436.
doi: 10.1142/S0218396X01000826. |
[27] |
V. Mehandiratta, M. Mehra and G. Leugering,
Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph, Journal of Mathematical Analysis and Applications, 477 (2019), 1243-1264.
doi: 10.1016/j.jmaa.2019.05.011. |
[28] |
G. Mophou, G. Leugering and P. S. Fotsing, Optimal control of a fractional Sturm-Liouville problem on a star graph, Optimization, (2020), 1–29.
doi: 10.1080/02331934.2020.1730371. |
[29] |
G. Mophou,
Optimal control for fractional diffusion equations with incomplete data, Journal of Optimization Theory and Applications, 174 (2017), 176-196.
doi: 10.1007/s10957-015-0817-6. |
[30] |
D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014.
doi: 10.1007/978-3-319-04621-1. |
[31] |
K. S. Patel and M. Mehra, Fourth order compact scheme for space fractional advection-diffusion reaction equations with variable coefficients, J. Comput. Appl. Math., 380 (2020), 112963.
doi: 10.1016/j.cam.2020.112963. |
[32] |
Y. V. Pokornyi and A. V. Borovskikh,
Differential equations on networks (geometric graphs), Journal of Mathematical Sciences, 119 (2004), 691-718.
doi: 10.1023/B:JOTH.0000012752.77290.fa. |
[33] |
S. Qureshi and A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Physica A: Statistical Mechanics and its Applications, 526 (2019), 121127, 19 pp.
doi: 10.1016/j.physa.2019.121127. |
[34] |
S. Qureshi and P. Kumar,
Using Shehu integral transform to solve fractional order Caputo type initial value problems, Journal of Applied Mathematics and Computational Mechanics, 18 (2019), 75-83.
doi: 10.17512/jamcm.2019.2.07. |
[35] |
S. Qureshi and A. Yusuf,
Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos, Solitons & Fractals, 126 (2019), 32-40.
doi: 10.1016/j.chaos.2019.05.037. |
[36] |
S. Qureshi, A. Yusuf, A. A. Shaikh and M. Inc, Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data, Physica A: Statistical Mechanics and its Applications, 534 (2019), 122149, 22 pp.
doi: 10.1016/j.physa.2019.122149. |
[37] |
K. Sayevand and M. Rostami,
Fractional optimal control problems: Optimality conditions and numerical solution, IMA Journal of Mathematical Control and Information, 35 (2016), 123-148.
doi: 10.1093/imamci/dnw041. |
[38] |
H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Physical Review B, 12 (1975), 2455.
doi: 10.1103/PhysRevB.12.2455. |
[39] |
A. Shukla, M. Mehra and G. Leugering, A fast adaptive spectral graph wavelet method for the viscous Burgers' equation on a star-shaped connected graph, Mathematical Methods in the Applied Sciences, (2019).
doi: 10.1002/mma.5907. |
[40] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd, 2014.
doi: 10.1142/9069. |
show all references
References:
[1] |
O. P. Agrawal,
Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272 (2002), 368-379.
doi: 10.1016/S0022-247X(02)00180-4. |
[2] |
O. P. Agrawal,
A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynamics, 38 (2004), 323-337.
doi: 10.1007/s11071-004-3764-6. |
[3] |
O. P. Agrawal,
Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A: Mathematical and Theoretical, 40 (2007), 6287-6303.
doi: 10.1088/1751-8113/40/24/003. |
[4] |
O. P. Agrawal,
A formulation and numerical scheme for fractional optimal control problems, Journal of Vibration and Control, 14 (2008), 1291-1299.
doi: 10.1177/1077546307087451. |
[5] |
R. Almeida and D. F. M. Torres,
Necessary and sufficient conditions for the fractional calculus of variations with {C}aputo derivatives, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1490-1500.
doi: 10.1016/j.cnsns.2010.07.016. |
[6] |
H. W. Berhe, S. Qureshi and A. A. Shaikh, Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis, Chaos, Solitons & Fractals, 131 (2020), 109536, 13 pp.
doi: 10.1016/j.chaos.2019.109536. |
[7] |
T. Blaszczyk and M. Ciesielski,
Fractional oscillator equation–transformation into integral equation and numerical solution, Applied Mathematics and Computation, 257 (2015), 428-435.
doi: 10.1016/j.amc.2014.12.122. |
[8] |
G. W. Bohannan,
Analog fractional order controller in temperature and motor control applications, Journal of Vibration and Control, 14 (2008), 1487-1498.
doi: 10.1177/1077546307087435. |
[9] |
R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[10] |
A. Debbouche, J. J. Nieto and D. F. M. Torres,
Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, Journal of Optimization Theory and Applications, 174 (2017), 7-31.
doi: 10.1007/s10957-015-0743-7. |
[11] |
T. L. Guo,
The necessary conditions of fractional optimal control in the sense of Caputo, Journal of Optimization Theory and Applications, 156 (2013), 115-126.
doi: 10.1007/s10957-012-0233-0. |
[12] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
doi: 10.1142/9789812817747. |
[13] |
A. A. Kilbas and H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. |
[14] |
D. E. Kirk, Optimal Control Theory: An Introduction, Courier Corporation, 2004. Google Scholar |
[15] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
Modelling and controllability of networks of thin beams, Lect. Notes Control Inf. Sci., 180 (1992), 467-480.
doi: 10.1007/BFb0113314. |
[16] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
Control of planar networks of Timoshenko beams, SIAM J. Control Optim., 31 (1993), 780-811.
doi: 10.1137/0331035. |
[17] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.
doi: 10.1002/mma.1670160503. |
[18] |
J. E. Lagnese and G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser Boston, Inc., Boston, MA, 1994.
doi: 10.1007/978-1-4612-0273-8. |
[19] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
On the analysis and control of hyperbolic systems associated with vibrating networks, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 77-104.
doi: 10.1017/S0308210500029206. |
[20] |
G. Leugering,
On the semi-discretization of optimal control problems for networks of elastic strings:global optimality systems and domain decomposition, J. Comput. Appl. Math., 120 (2000), 133-157.
doi: 10.1016/S0377-0427(00)00307-1. |
[21] |
G. Leugering,
Domain decomposition of an optimal control problem for semi-linear elliptic equations on metric graphs with application to gas networks, Applied Mathematics, 8 (2017), 1074-1099.
doi: 10.4236/am.2017.88082. |
[22] |
C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Taylor and Francis group, 2015.
doi: 10.1201/b18503. |
[23] |
A. A. Lotfi and S. A. Yousefi,
A numerical technique for solving a class of fractional variational problems, Journal of Computational and Applied Mathematics, 237 (2013), 633-643.
doi: 10.1016/j.cam.2012.08.005. |
[24] |
G. Lumer,
Connecting of local operators and evolution equtaions on a network, Lect. Notes Math., 787 (1980), 219-234.
|
[25] |
R. L. Magin and M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, Journal of Vibration and Control, 14 (2008), 1431-1442. Google Scholar |
[26] |
F. Mainardi and P. Paradisi,
Fractional diffusive waves, Journal of Computational Acoustics, 9 (2001), 1417-1436.
doi: 10.1142/S0218396X01000826. |
[27] |
V. Mehandiratta, M. Mehra and G. Leugering,
Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph, Journal of Mathematical Analysis and Applications, 477 (2019), 1243-1264.
doi: 10.1016/j.jmaa.2019.05.011. |
[28] |
G. Mophou, G. Leugering and P. S. Fotsing, Optimal control of a fractional Sturm-Liouville problem on a star graph, Optimization, (2020), 1–29.
doi: 10.1080/02331934.2020.1730371. |
[29] |
G. Mophou,
Optimal control for fractional diffusion equations with incomplete data, Journal of Optimization Theory and Applications, 174 (2017), 176-196.
doi: 10.1007/s10957-015-0817-6. |
[30] |
D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014.
doi: 10.1007/978-3-319-04621-1. |
[31] |
K. S. Patel and M. Mehra, Fourth order compact scheme for space fractional advection-diffusion reaction equations with variable coefficients, J. Comput. Appl. Math., 380 (2020), 112963.
doi: 10.1016/j.cam.2020.112963. |
[32] |
Y. V. Pokornyi and A. V. Borovskikh,
Differential equations on networks (geometric graphs), Journal of Mathematical Sciences, 119 (2004), 691-718.
doi: 10.1023/B:JOTH.0000012752.77290.fa. |
[33] |
S. Qureshi and A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Physica A: Statistical Mechanics and its Applications, 526 (2019), 121127, 19 pp.
doi: 10.1016/j.physa.2019.121127. |
[34] |
S. Qureshi and P. Kumar,
Using Shehu integral transform to solve fractional order Caputo type initial value problems, Journal of Applied Mathematics and Computational Mechanics, 18 (2019), 75-83.
doi: 10.17512/jamcm.2019.2.07. |
[35] |
S. Qureshi and A. Yusuf,
Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos, Solitons & Fractals, 126 (2019), 32-40.
doi: 10.1016/j.chaos.2019.05.037. |
[36] |
S. Qureshi, A. Yusuf, A. A. Shaikh and M. Inc, Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data, Physica A: Statistical Mechanics and its Applications, 534 (2019), 122149, 22 pp.
doi: 10.1016/j.physa.2019.122149. |
[37] |
K. Sayevand and M. Rostami,
Fractional optimal control problems: Optimality conditions and numerical solution, IMA Journal of Mathematical Control and Information, 35 (2016), 123-148.
doi: 10.1093/imamci/dnw041. |
[38] |
H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Physical Review B, 12 (1975), 2455.
doi: 10.1103/PhysRevB.12.2455. |
[39] |
A. Shukla, M. Mehra and G. Leugering, A fast adaptive spectral graph wavelet method for the viscous Burgers' equation on a star-shaped connected graph, Mathematical Methods in the Applied Sciences, (2019).
doi: 10.1002/mma.5907. |
[40] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd, 2014.
doi: 10.1142/9069. |




32 | .1867 | .1792 | .1749 |
64 | .1834 | .1762 | .1718 |
128 | .1817 | .1746 | .1702 |
256 | .1808 | .1738 | .1694 |
512 | .1804 | .1734 | .1690 |
1024 | .1802 | .1732 | .1688 |
32 | .1867 | .1792 | .1749 |
64 | .1834 | .1762 | .1718 |
128 | .1817 | .1746 | .1702 |
256 | .1808 | .1738 | .1694 |
512 | .1804 | .1734 | .1690 |
1024 | .1802 | .1732 | .1688 |
1.2 | .2017 | .1959 | .1910 |
1.4 | .1894 | .1824 | .1778 |
1.6 | .1775 | .1703 | .1662 |
1.8 | .1666 | .1598 | .1563 |
2 | .1572 | .1511 | .1482 |
1.2 | .2017 | .1959 | .1910 |
1.4 | .1894 | .1824 | .1778 |
1.6 | .1775 | .1703 | .1662 |
1.8 | .1666 | .1598 | .1563 |
2 | .1572 | .1511 | .1482 |
[1] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[2] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[3] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[4] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[5] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[6] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[7] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[8] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[9] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[10] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[11] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[12] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[13] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[14] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[15] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[16] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[17] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[18] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[19] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[20] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]